Stormwater Management and Pollution Prevention Plan

Gan-Eden Residential Community

Town of Thompson, Sullivan County, New York

Prepared for:

Gan-Eden Estates

90 Woodbridge Center Dr. FI 6th Woodbridge, New Jersey

Prepared by:

PAULUS, SOKOLOWSKI AND SARTOR, LLC Consulting Engineers & Environmental Planners 67A Mountain Boulevard Extension Warren, New Jersey 07059

July, 2016

Lisa A. DiGerolamo Professional Engineer New York License No. 086749

TABLE OF CONTENTS

1.0	Background Information	1
A.	Project Background	
В.	Purpose of Stormwater Plan Report	
C.		
D.	Existing (Pre-Development) Conditions	
E.	Proposed Future (Post-Development) Conditions	3
2.0	Stormwater Management	3
Α.	Stormwater Management Constraints and Objectives	
В.	Stormwater Management Main Components	4
3.0	Comparison of Existing with Proposed Runoff	4
Α.	Methodologies	4
R.	Peak Flow Reduction Calculations	5
C.		
	Runoff Reduction Analysis & Calculations	
	Evaluation	
4.0	Erosion and Sediment Control	10
5.0	Implementation Schedule	11
Α.	Implementation Schedule	11
В.	Short-Term Maintenance	12
C.	Long -Term Maintenance	13
D.	-	
E.		
F.	Construction and Waste Materials and Spill Controls	
6.0	Reference:	15

APPENDICES

Appendix A	USGS Vicinity Map
Appendix B	Stormwater Discharge Permit Information
Appendix C	Soil Classifications & Reports
Appendix D	Water Quality Calculation
Appendix E	Runoff Reduction Calculation
Appendix F	Vegetated Swales Calculation Summary
Appendix G	Stormwater Hydrographs (Pre-Development)
Appendix H	Stormwater Hydrographs (Post-Development)
Appendix I	Storm Sewer Pipe Calculations
Appendix J	Stormwater Basin Spillway Calculations
Appendix K	Soil Erosion and Sediment Control Conduit Outlet Protection
Appendix L	Construction Site Stormwater Logbook

1.0 BACKGROUND INFORMATION

A. Project Background

Paulus, Sokolowski and Sartor PC (PS&S) was retained by Gan-Eden Estates to complete a stormwater management and pollution prevention plan to summarize the stormwater management, and sediment & erosion control activities associated with residential site development for the proposed total of 535 dwellings. The project is located on 199 acres of property, known as Gan-Eden, which consists of small portion of land (13.4 acres) inside the Town of Fallsburg with the majority of the property filed in tax map as Section 2, Block 1, Lot 63 and situated at northwest corner of County Road 104 and County Road 107 in the Town of Thompson, Sullivan County. The project includes the construction of a total of 535 dwellings, approximately 2.1 miles of circulation roadways, a clubhouse, tennis courts, playground, a water tower, a wastewater treatment plant and utility infrastructure. The proposed community will have 3 points of access to the adjacent County Roads. (See Appendix A-USGS Map)

B. Purpose

The purpose of this Stormwater Management and Erosion Control Plan is to identify pre-development and post-development hydrologic and hydraulic conditions, and to delineate the stormwater control practices required to prevent, minimize, or mitigate potential water quality and runoff impacts associated with stormwater runoff for the proposed development during construction and after project completion.

In addition, this report identifies the submittals required to meet the regulatory requirements for a New York State Department of Environmental Conservation (NYSDEC). Appendix B contains a Notice of Intent Form (NOI); and a sample Contractor Certification Statement Form. The site contractors and subcontractors are required to certify compliance with the Stormwater Management and Pollution Prevention Plan. The NOI form would be finalized, executed and submitted to NYSDEC prior to construction. The contractor's and subcontractor's certification statements should be executed and submitted with any contract agreement.

C. Regulatory Requirements

Based on NYSDEC regulatory requirements, construction activities disturbing one or more acres of soil must be authorized under the General Permit for Stormwater Discharges from Construction Activities (Permit No. GP-0-15-002). Permittees are required to develop a Stormwater Pollution Prevention Plan (SWPPP) to prevent discharges of construction-related pollutants to surface waters.

The NYSDEC updated the New York State Stormwater Management Design Manual to include Green Infrastructure Requirements. Green infrastructure (GI) can help manage stormwater runoff by removing pollutants and reducing the amount of runoff that enters storm sewers, wetlands, streams, etc. The SWPPP must include an evaluation of all the green infrastructure planning measures as they apply to the site.

D. Existing (Pre-Development) Conditions

The 199 acre existing site is rectangular in shape within the town of Thompson with approximately 2,500 feet north to south and 4,000 feet east to west. Approximately 11.06% of this tract (22.01 acres) is delineated as NYSDEC and ACOE wetlands including buffers at 13 locations in the property. The wetlands are located at low elevations and receive stormwater runoff from the future disturbed areas. Almost all of the wetlands are preserved under the proposed development. The west part of site is steeply sloping from the plateau with the elevation as high as 1640' to toe elevations around 1500'. In contrast, the east side of property is moderately sloping toward the north.

The soil type occurring in proposed construction areas is WeB (Wellsboro, gravelly loam) according to the Sullivan County Soil Survey by USDA (Appendix C). Permeability of this Wellsboro soil is moderate, and surface runoff is medium as described in the Soil Survey.

Table-1: Gan-Eden Site Soils Data

	Symbol	Name	Hydrologic Soil Group (HSG)	Area		Average HSG	
				SF	AC	%	
1	AoC	Amot/Oquaga	C/D	971,290	22.30	10.5%	
2	OgD	Oquaga/Amot	С	165,850	3.81	1.8%	
3	OgC	Oquaga/Amot	С	522,910	12.00	5.7%	
4	LaB	Lackawanna	С	722,190	16.58	7.8%	
5	OeB	Oquaga	С	2,402,680	55.16	26.1%	
6	AoE	Amot/Oquaga	C/D	1,007,350	23.13	10.9%	
7	SeB	Morris, extremely stony	С	100,800	2.31	1.1%	С
8	MrB	Morris	С	453,410	10.41	4.9%	
9	WiC	Wellsboro, extremely stony	С	634,090	14.56	6.9%	
10	WeC	Wellsboro	С	1,025,090	23.53	11.1%	
11	WeB	Wellsboro, extremely stony	С	958,360	22.00	10.4%	
12	LaC	Lackawanna	С	58,760	1.35	0.6%	
13	Pa	Palms	A/D	55,990	1.29	0.6%	
	water			128,420	2.95	1.4%	
		Total		9,207,190	211.37	100.0%	

The remaining three types of soils on site are found in wetlands areas and considered to have greater limitation to permeability. As summarize in Table-1, hydrological soil group (HSG) for all soils at the site are considered as HSG C.

E. Proposed Future (Post-Development) Conditions

This project involves the development of 199 acres of land for a residential community including 146 townhouse homes and 382 garden apartment units and associated clubhouse, pool, playground, roadways and utility infrastructure. Circulation roads within the community will be asphalt with curbs and runoff from the pavements will be collected through a closed stormwater drainage system. Building rooftop runoff will be disconnected from other impervious surfaces and conveyed to designated pervious areas to reduce runoff volumes and rates.

Proposed stormwater management facilities will consist of 5 stormwater management basins with forebays, 3 vegetated swales and stormwater piping network to achieve runoff quantity and quality controls as required by the NYSDEC Stormwater Management Design Guidelines.

2.0 STORMWATER MANAGEMENT

A. Stormwater Management Constraints and Objectives

The stormwater management field is always evolving, and new technologies are constantly emerging and being implemented. Stormwater management for this development proposes to utilize some of the NYSDEC recommended practices where site conditions demand. Understanding these specific site constraints as follows is essential to proper stormwater management designing:

- 1. Wetlands of nearly 9.5% of its total property;
- 2. Low permeable soil conditions (HSG C);
- 3. Relatively steep site slopes (6-35%);
- 4. Two natural drainage design points.

The primary objectives of the Stormwater Management Plan are as follows, with consideration for the protection of wetlands and maintenance of natural hydrology of the site.

- Reduce the post-developed rates of runoff below the pre-developed rates for all given storm events;
- Improve water quality through capture and treatment of 90% of the average annual stormwater runoff volume or 'Water Quality Volume'.

Achieve runoff reduction requirement by applying green infrastructure techniques

B. Stormwater Management Main Components

In order to be in compliance with the NYSDEC technical standards and to meet the objectives outlined above, the following practices have been incorporated into the stormwater management plan:

- 1. Three SWM basins classified as shallow wetland (W-1) by the NYDSEC design manual are proposed at the site for flow reduction and treatment of the existing subwatershed discharged northwards. Basins A and B are located at the lower end of the site along the northern property line and adjacent to natural wetlands. Basin C is located centrally on the site, just below the existing stormwater pond. These basins are designed to treat pavement runoff and attenuate peak flows as well as to create consistency with surrounding natural resources of wetlands.
- 2. One shallow wetland basin (Basin D) is designed for control of runoff from proposed impervious surface into the existing pond. The combination of this proposed basin and existing pond have sufficient capability to attenuate and treat tributary flows;
- 3. One shallow wetland basin (Basin E) is designed for flow reduction and treatment of the existing subwatershed discharged westwards;
- 4. Three (3) vegetated swales with combined total length of 2625 LF are proposed to be turf-lined to convey stormwater at a low velocity, promoting natural treatment and infiltration. The vegetated swales function as naturalized drainage paths to increase time of concentration and meet the green infrastructure requirements of the NYS Stormwater Management Design Manual.

3.0 COMPARISON OF EXISTING WITH PROPOSED RUNOFF

A. Methodologies

The assessment of stormwater runoff has been based upon the Soil Conservation Service Method as described in Technical Release No. 55 (TR-55), "Urban Hydrology for Small Watersheds". Theoretical storms are modeled with the 24 Hour SCS Unit Dimensionless Hydrograph utilizing a Type III rainfall distribution and recurrence intervals of 1, 10, 25 and 100 years, shown on Table 2. Hydrograph generations and routings were accomplished via Hydraflow 2014 Program. The program is tailored to

model the SCS Method for hydrograph generations and to perform iterative solutions of the continuity equation (outflow=inflow +/- storage) with the intermediate values of the routing curve obtained through linear interpolation. The program has a default shape factor of 484.

Table-2: Design Storms								
Event	90% Rainfall	1 Year	10 Year	25 Year	100 Year			
Event	Water Quality	Channel Protection	Overbank	Convey System	Extreme Strom			
Rainfall (inch)	1.30	2.55	4.50	6.00	7.75			

Storm sewers hydraulics has been based upon surface runoff generated by the 25 year storm event. As recommended by NYSDEC Design Manual, 10-year storm is for a minimum sizing criterion for closed conveyance system. The corresponding Manning's "n" value for HDPE pipe utilized in the design is 0.013. Storm sewer capacity is based upon full depth gravity flow. All storm pipe sizing information is displayed in Appendix I.

Emergency spillways for all SWM basins are designed for the 100 year storm event, and the weir equation as referred to the Handbook of Hydraulics, by Brater and King. The results are presented in Appendix J.

Implementation of the Stormwater Management Plan will result in peak runoff attenuation, reducing the proposed rates of runoff to the two analysis points identified as "West" and "North" in the corresponding modeling.

B. Peak Flow Reduction Calculations

The primary objective of the storm water quantity control is to limit the composite post-developed rate of runoff from the developed portion of the site to be less than or equal to the pre-developed rate of runoff under the influence of a 1, 10, and 100-year frequency storm with peak flow reduction.

The hydrographic model of the pre-development condition is to study two watersheds (four drainage areas) identified by natural topographic features and analyzed by Hydraflow program. The results of the 1, 10 and 100-year routed hydrographs for pre-development can be found in Appendix G and are summarized in the Table-3 below.

Table 3. Runoff Peak Flows of Pre-Development

Drainage	Drainage	Area (ac.)			CN		Po	eak Flow (cfs)					
Point	Area Name	Pervious	Impervious	Total	CN	(Min.)	1-Year	10-Year	100-Year					
West	XDA-1	30.02	0	30.02	79	12.5	21.55	61.13	133.62					
	XDA-2	71.94	0	71.94	79	21.2	41.40							
North	XDA-3	31.55	0	31.55	79	9.7		132.36	306.48					
	XDA-4	10.95	0	10.95	79	13.6								
To	otal	144.46	0	144.46										

The proposed storm water management system will consist of gravity storm sewer collection systems and detention systems including five detention basins for the proposed drainage areas PDA-A, PDA-B PDA-C, PDA-D, and PDA-E. The proposed outlet structures control the rate of runoff from each of the detention systems. The discharge from the detention system Basin E and watershed PDA-X1 will drain to the westward portion of the site. The runoff from the remaining drainage areas will be conveyed northward either through stormwater basins (Basins A, B, C, and D) for treatment and detention or through swales, pipes or watershed directly to downstream wetlands areas (PDA-X2, X3, and X4). The hydrographic model of post-development condition is analyzed by the Hydraflow program and the results of the 1, 10 and 100-year routed hydrographs for post development can be found in Appendix H, and summarized in Table 4 below.

Table 4. Runoff Peak Flows for Post-Development

	Drainaga	S/W	M Area (Flow & Wa					Flow & Water Surface					
Drainage	Drainage Area	300	IVI Alea (ac.,	CN	Tc	Routing	ng 1 year		10 year		100 year		
Point	Name	Perv.	Imno	Total	011	(Min.)	Basin	W.S.	Flow	W.S.	Flow	W.S.	Flow	
		reiv.	Impe.	TOtal				ft	cfs	ft	cfs	ft	cfs	
West	PDA-E	4.18	1.90	6.08	81	10.0	Basin E	1495.71	12.68	1496.89	41.86	1498.65	98.15	
West	PDA-X1	22.43	1.41	23.84	75	10.0	N/A	N/A	12.00	N/A	41.00	N/A	30.13	
	PDA-A	3.06	1.53	4.59	82	10.0	Basin A	1386.07		1387.74 1377.74	1387.74		1389.11	
	PDA-B	2.12	3.24	5.36	89	10.0	Basin B	1376.26				1378.99		
	PDA-X2	59.10	5.38	64.48	76	10.0	N/A	N/A		N/A		N/A		
North	PDA-C	2.95	4.82	7.77	89	10.0	Basin C	1486.28	35.44	1487.35	125.01	1489.18	285.75	
	PDA-X3	14.33	2.64	16.97	77	10.0	N/A	N/A		N/A		N/A		
	PDA-D	2.60	1.79	4.39	84	10.0	Basin D	1496.65		1498.23		1498.89		
	PDA-X4	10.34	0.64	10.98	75	10.0	N/A	N/A		N/A		N/A		
То	tal	121.11	23.35	144.46										

Implementation of the Storm Water Management Plan will significantly reduce the overall discharge rates of runoff from the development area for the 1, 10, and 100-year storm events for this project as exhibited in Table 5 below at the two discharge study points, "West" and "North" respectively.

Table 5a: Summary of Storm Flows for Discharge Point: West

Description	Storm Event/Peak Flow (cfs)							
Description	1-Year	10-Year	100-Year					
Pre-Development	21.55	61.13	133.62					
Post-Development	12.68	41.86	98.15					
Difference from Pre-								
Development	-8.87	-19.27	-35.47					
% Reduction from Pre-								
Development	41%	32%	27%					

Table 5b: Summary of Storm Flows for Discharge Point: North

Description	Storm Event/Peak Flow (cfs)						
Description	1-Year	10-Year	100-Year				
Pre-Development	41.40	132.36	306.48				
Post-Development	35.44	125.01	285.75				
Difference from Pre-							
Development	-5.96	-7.35	-20.73				
% Reduction from Pre-							
Development	14%	6%	7%				

C. Water Quality Treatment Calculations

In accordance with NYSDEC Stormwater Management Guidelines, water quality volumes for all proposed watersheds are calculated and presented in Appendix D. Treatment considerations have been given to providing water quality enhancement practices of stormwater runoff based on the feasibility of the following methodologies:

- 1. The implementation of the proposed swale provides a number of advantages including the increase in time of concentration and allowing the trapping of coarse sediments before the stormwater enters the management facilities.
- **2.** Five stormwater shallow wetland basins (Basins A, B, C, D, and E) are proposed with the integration of forebays and water quality storage volume providing water quality enhancement. These facilities are designed in locations with connections to the existing on site wetlands. As per the

New York State Stormwater Management Design Manual dated January 2015, all required elements of the proposed basins are presented in Table 6.

Table 6: Basin Required Elements

	,	Shallow Wetlands Basin (W-1)							
Items		West							
items	Basin	Basin	Basin	Basin					
	Α	В	С	D	Basin E				
Drainage area (ac.)	4.59	5.36	7.77	4.39	6.08				
Water Quality Volume (ac.ft.)	0.120	0.239	0.354	0.138	0.151				
Basin Surface area (ac.)	0.185	0.309	0.174	0.118	0.416				
Is basin more than 1% of its drainage area?	yes	yes	yes	yes	yes				
Forebay Volume (ac.ft)	0.046	0.145	0.048	0.052	0.051				
Is forebay volume more than 10% WQv?	yes	yes	yes	yes	yes				

The stormwater runoff from proposed impervious surfaces including roads, buildings and driveways will be directed and treated within the proposed stormwater management practices utilized on site. As a result of the application of these treatment practices, both suspended and deposited excess sediments from proposed development will be minimized to the water resource.

D. Runoff Reduction Analysis & Calculations

An additional requirement of the NYSDEC Stormwater Management Design Manual is to implement green infrastructure solutions. The objective of runoff reduction is to replicate pre-development hydrology by maintaining pre-construction infiltration, peak runoff flow, discharge volume, as well as minimizing concentrated flow by using runoff control measures before runoff reaches the collection system. Green infrastructure techniques are to be implemented in two ways:

- Carefully planning to reduce runoff contributing areas;
- Utilize feasible techniques to reduce contributing volume.

In the aspect of green infrastructure planning, as demonstrated in the proposed site plan, all paved areas including roadways, sidewalks and driveways are planned to meet minimum municipal requirements and maximum function in order to minimize impervious coverage.

In the aspect of green infrastructure design, the following two techniques are applied to this project:

- Disconnect rooftops, and
- Incorporate vegetated swales

Due to moderately permeable HSG C soils on site as discussed previously, the disconnected rooftop practice will be implemented to provide sheet flow over lawn areas. The areas of rooftop account for as much as 57.40% of the total proposed impervious areas for the project. Sending runoff away from the conventional closed piping system through pervious surface will increase flow travel time and reduce peak flows. The proposed project will introduce approximately 2,625 feet of vegetated swales with bottom width 4 feet, depth 6" to 24" and 4% slope in three locations to enhance infiltration capability for the moderately permeable soil. In the use of swales for conveyance, time of concentration increases will enhance stormwater treatment. The proposed development meets the regulation of runoff reduction requirement as summarized in Table 7 below. (Refer to Appendix E for detailed calculations)

Table 7: Runoff Reduction Analysis

Items	Unit	Result	
Water Quality Volume	ac.ft	3.714	
Soil Specific Reduction Factor (HSG C)		0.30	
Runoff Reduction Min. Volume	ac.ft	0.928	
Disconnected Rooftop Reduction Volume	ac.ft	1.683	
Vegetated Swale Reduction Volume	ac.ft	0.030	
Total Green Infrastructure Tech. Reduction	ac.ft	1.713	
Is Runoff Reduction more than Required Volume?	yes		
SMP Runoff Reduction	ac.ft	3.409	
Total Runoff Reduction	ac.ft	5.122	
Is Water Quality provided more than Water Quality Volume?	yes		

E. Evaluation

The assumptions used in assessing pre-development and post-development drainage conditions include:

- 1. Wetlands in the west portion of the tract receiving runoff discharges from the project site are combined and routed as "West" for one of the discharge points of interest;
- **2.** Discharge point "North" is considered as the ultimate point to receive runoff from proposed developed areas collectively;

- **3.** Pre-development runoff curve numbers are based on vegetation conditions as indicated on the site survey. Woods, rotational meadow and open space are considered in good and fair condition;
- **4.** Impervious area and cover conditions for post-development are based on current site plans prepared by PS&S.

The proposed implementation of stormwater basins, vegetated swales and other green infrastructure in stormwater quantity and quality control meet the requirements for application under the New York State Pollutant Discharge System (SPDES) General Permit for Stormwater Discharge from Construction Activities (NYSDEC 2015 manual).

4.0 EROSION AND SEDIMENT CONTROL

The construction of the proposed development will require the excavation and grading of soils on site. The total area of disturbance is approximately 73 acres, or about 37% of the existing site. Approximately 63% of the site will remain undisturbed and all wetlands and buffers will be protected during construction.

During construction of the proposed development, temporary and permanent soil erosion and sediment control measures shall be implemented, to minimize impacts to the surrounding land areas and water bodies. Soil erosion would be controlled by the following measures:

- Keeping disturbed areas to a minimum and providing temporary seeding and mulching if construction operations cease for more than 7 days;
- Keeping topsoil stockpiles less than 35 feet high and keeping the side slopes of these stockpiles at or less than 2:1;
- Constructing a crushed stone tracking pad at the points of egress and ingress for construction vehicles of each phase; and
- Placing stone rip-rap at the outlets of storm sewer pipe networks with sizing computations provided in Appendix J.

Sedimentation would be controlled by:

- Installing silt fence barriers along the base of slopes and around the perimeter of topsoil stockpiles;
- Placing inlet filters over the grate of each stormwater inlet or catch basin as it is constructed to prevent sedimentation within the storm sewer system;

- Cleaning inlet filters and the upstream sides of all silt fencing after each erosion producing storm;
- Use of stormwater permanent basins as temporary sediment basins;
- Temporary sediment traps at low points;
- Use of temporary diversion swales.

Soil erosion and sediment control shall be ensured during the construction period through a program of daily observation and maintenance with particular emphasis on inspection and repair following rain storms. All graded areas shall be permanently seeded and landscaped to minimize erosion. All control measures shall be carried out in accordance with NYSDEC Guidelines for Urban Erosion and Sediment Control. Soil erosion and sediment control plans and details are included in plan sheets C-9 to C-9H and C-22 to C-24 of the Site Plan drawings.

In order to insure that all discharge velocities from the site will not erode the next downstream reach, the outlet protection placed at all of outlet ends of the proposed stormwater conveyance system in this project are designed based on New York Guidelines for Urban Erosion and Sediment Control. The results are presented in Appendix J.

5.0 IMPLEMENTATION SCHEDULE

A. Implementation Schedule

- 1. The following schedule for erosion and sediment control facilities shall be implemented:
 - a. Obtain Plan Approval from municipal and regulatory agencies;
 - b. Submit Notice of Intent (NOI) for Stormwater Discharge Associated with Construction Activity Under the SPDEC General Permit (by Operator)
 - c. Hold pre-construction conference;
 - d. Install temporary gravel construction entrance/exits as required;
 - e. Install fabric silt fence;
 - f. Clear/grub roadway & home sites
 - g. Construct temporary drainage swales and temporary sediment traps;
 - h. Strip and stockpile topsoil, rough grade home sites & reoadways;
 - i. Prepare subgrade and construct subbases courses for roads and driveways;
 - j. Construct utilities;
 - k. Construct final drainage vegetated swales;

- 1. Construct final surface course for roads and driveways;
- m. Topsoil; fine grade; and seed, fertilize and mulch all disturbed areas
- n. Inspect all erosion and sediment controls weekly and after rainfall events, repair as required;
- o. Water vegetation as required;
- p. After the sites are stabilized and vegetation has become established, remove all temporary erosion control measures;
- q. Submit Notice of Termination (NOT) form for Stormwater Discharges Associated with Construction Activity Under the SPDEC General Permit (by Operator)
- 2. The developer and contractor shall be responsible for development and implementation of appropriate temporary and permanent erosion and sediment control features on the site in compliance with all applicable rules, regulations, permits, project plans and specifications, and the Stormwater Management and Pollution Prevention Plan. Documentation of installation of stormwater management and erosion and sediment control practices should be accordance with Appendix K.
- 3. The Contractor Site Logbook including signed NOI, permit notification, contractor's certification statements and the Stormwater Management & Pollution Prevention Plan shall be kept on site and up to date at all times during construction and made available to authorities upon request.
- 4. All litter shall be cleared up by the end of each working day and properly disposed of. All debris shall be stored neatly until it can be removed and properly disposed of. All chemicals shall be properly applied according to directions and properly stored in appropriate containers when not in use.

B. Short-Term Maintenance

Short term maintenance should occur during construction and for a post-construction period of (1) year. Short term maintenance of the construction access roads, drainage features and detention basins is the responsibility of the owner.

- 1. Vegetated areas and drainage channels are to be maintained as follows:
 - Maintain a grass height of 4" to 6"
 - Maintain side slopes and
 - Repair erosion as necessary
- 2. Vegetated swales are to be maintained as follows:
 - Each grass swale shall be inspected every two (2) weeks and after rainfall events. The system shall be checked for any silt or grit built-up when 25 percent of the original

volume has been exceeded. The stone or timber check dams shall be cleaned of any silt as required, providing for free flow of stormwater.

- 3. Culvert are to be maintained as follows:
 - Culverts shall be inspected every two (2) weeks and after rainfall events and cleaned of any silt build-up as required to provide for free flow of stormwater.

C. Long -Term Maintenance

- 1. The municipality or site owner will be responsible for maintaining those facilities located within its property boundaries and easements if any.
- 2. Maintenance activity for vegetation include mowing, fertilizing, watering, pruning, fire controls in dry weather, weed and pest control, reseeding, and repairs as necessary to maintain a vigorous, dense vegetative cover.
- 3. Vegetated area and drainage channels are to be maintained as follows:
 - Maintain a grass height of 4" to 6"
 - Maintain side slops and
 - Repair erosion as necessary
- 4. Vegetated swales are to be maintained as follows:
 - Each grass swale shall be inspected every two (2) weeks and after rainfall events. The system shall be checked for any silt or grit built-up when 25 percent of the original volume has been exceeded. The stone or timber check dams shall be cleaned of any silt as required, providing for free flow of stormwater.
- 5. Culverts are to be maintained as follows:
 - Culverts shall be inspected every two (2) weeks and after rainfall events and cleaned of any silt build-up as required to provide for free flow of stormwater.
- 6. Detention Basin is to be maintained as follows:
 - Repair berms and outlet structures

- Maintain side slopes and
- Repair erosion as necessary

D. Maintenance Schedule

Table 8: Maintenance Sc	hedule				
Structure or Feature	Maintenance or Monitoring Task	Schedule			
Grass	Mow	As required to maintain grass at required height and free of woody plant growth			
V	Monitor water level	Monthly and during and after each substantial rainfall			
Vegetated Swale	Clean	When 25 percent of the original volume has been exceeded			
Culvert	Inspect and clean as required	Annually			
Detention System	Inspect	Annually			
Determion System	Clean	Monthly and after major rainfalls as required			

E. Record Keeping During Construction

The stormwater record keeping requirements are included in Appendix K. This appendix addresses record keeping certifications, site assessments and inspections, reporting, and final inspection. Properly completing the forms contained in the Construction Site Logbook will meet the inspection requirements for the NYSDEC SPDEC General Permit for Construction Activities. The logbook and completed forms and this Stormwater Management & Pollution Prevention Plan shall be kept on site at all times during construction and made available to authorities upon request.

F. Construction and Waste Materials and Spill Controls

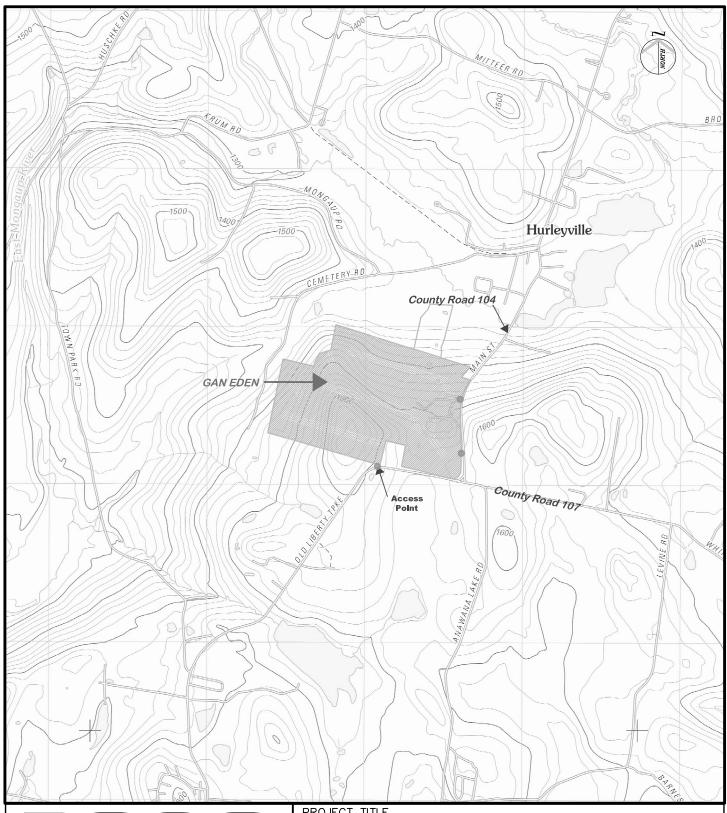
- 1. Construction materials expected to be temporarily stored on site while the development is under construction include concrete, wood, metal, plastics and other miscellaneous materials. They shall be covered by water resistant coverings to prevent contact with rainwater and they shall be stored off the ground (on pallets for example) to prevent contact with stormwater runoff. Soil materials such as fill and topsoil stockpiles shall be surrounded with silt fence.
- 2. Waste materials expected to be temporarily stored on the site during the construction of the roadways include wood and brush from road clearing operations, soil from road grading operations, trimmings from geotextile soil stabilization materials, excess concrete and asphalt from

curb and pavement construction, and other miscellaneous waste material such as wood, metal and plastic trimmings, etc.

- 3. Miscellaneous waste shall be stored in waste containers as dumpsters or other appropriate containers, which are periodically emptied by certified waste haulers or taken to an approved landfill or disposal site.
- 4. All petroleum spills that occur within New York State (NYS) must be reported to the NYS Spill Hotline (1-800-457-7362) within 2 hours of discovery, except spills which meet all of the following criteria:
 - a. The quantity is known to be less than 5 gallons; and
 - b. The spill is contained and under the control of spiller; and
 - c. The spill has not and will not reach the State's water or any land; and
 - d. The spill is cleaned up within 2 hours of discovery.

A spill is considered to have not impacted land if it occurs on a paved surface such as asphalt or concrete. A spill in dirt or gravel parking lot is considered to have impacted land and is reportable.

6.0 REFERENCE:


New York State Department of Environmental Conservation August 2005. New York Standard and Specification for Erosion and Sediment Control. Empire State Chapter, Soil and Water Conservation Society, Syracuse, New York.

New York State Department of Environmental Conservation. January 2015. New York State Stormwater Management Design Manual. Empire State Chapter, Soil and Water Conservation Society, Syracuse, New York.

Soil Survey of Sullivan County New York. July 1989. USDA/Cornell University. Superintendent of Documents, US Government Printing Office, Washington D. C. 20402

APPENDIX A

USGS VICINITY MAP

67A MOUNTAIN BOULEVARD EXTENSION P.O. BOX 4039 WARREN, NEW JERSEY 07059 PHONE: (732) 560-9700 FAX: (732) 560-9768

CERTIFICATE OF AUTHORIZATION NO. 24GA28032700

PROJECT TITLE

Gan-Eden Estates

SHEET TITLE

PROJECT LOCATION MAP IN USGS

DATE:	DRN. BY:	PROJ. NO.:
SCALE: 1"=2000'	CK'D BY:	SHT. NO.: APP-A

APPENDIX B

STORMWATER DISCHARGE PERMIT INFORMATION

NOTICE OF INTENT

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor Albany, New York 12233-3505

NYR	
-----	--

(for DEC use only)

Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-15-002 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANTRETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator Information													
Owner/Operator (Company Name/Pri	vate Owner Name/Municipality Name)												
Gan-Eden Estat	e s												
Owner/Operator Contact Person La	st Name (NOT CONSULTANT)												
Owner/Operator Contact Person Fi	rst Name												
Owner/Operator Mailing Address													
9 0 W o o d b r i d g e	Center Drive												
City													
Woodbridge													
State Zip N J 0 7 0 9 5 -													
Phone (Owner/Operator) Fax (Owner/Operator)													
Email (Owner/Operator)													
FED TAX ID													
(not required for individuals)													

Project Site Information	tion
Project/Site Name G a n - E d e n E s t a t e s	
Street Address (NOT P.O. BOX) Main Street (County Roa	d 104)
Side of Street O North O South O East • West	
City/Town/Village (THAT ISSUES BUILDING PERMIT) Town of Thompson	
State Zip County N Y 1 2 7 0 1 - S u 1 1 i v a n	DEC Region
Name of Nearest Cross Street O 1 d L i b e r t y T u r n p i k e (C)	o u n t y R o a d 1 0 7)
Distance to Nearest Cross Street (Feet)	Project In Relation to Cross Street North O South O East O West
Tax Map Numbers Section-Block-Parcel 2 - 1 - 6 3	Tax Map Numbers

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you $\underline{\text{must}}$ go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

X Coordinates (Easting)
5 2 6 4 1 8

Y C	oor	dina	ates	(N	orth	ning	•
4	6	1	9	2	5	0	

- 2. What is the nature of this construction project?
 - New Construction
 - O Redevelopment with increase in impervious area
 - O Redevelopment with no increase in impervious area

3. Select the predominant land use for bot SELECT ONLY ONE CHOICE FOR EACH	n pre and post development conditions.
Pre-Development Existing Land Use	Post-Development Future Land Use
○ FOREST	O SINGLE FAMILY HOME Number of Lots
● PASTURE/OPEN LAND	O SINGLE FAMILY SUBDIVISION
O CULTIVATED LAND	TOWN HOME RESIDENTIAL
O SINGLE FAMILY HOME	O MULTIFAMILY RESIDENTIAL
O SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
O TOWN HOME RESIDENTIAL	○ INDUSTRIAL
O MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL
○ INDUSTRIAL	○ ROAD/HIGHWAY
○ COMMERCIAL	O RECREATIONAL/SPORTS FIELD
○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL
O RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
○ BIKE PATH/TRAIL	O PARKING LOT
O LINEAR UTILITY	O CLEARING/GRADING ONLY
O PARKING LOT	O DEMOLITION, NO REDEVELOPMENT
O OTHER	○ WELL DRILLING ACTIVITY * (Oil, Gas, etc.)
	O OTHER
*Note: for gas well drilling, non-high volu	ume hydraulic fractured wells only
*Note: for gas well drilling, non-high volu	ume hydraulic fractured wells only
4. In accordance with the larger common pla enter the total project site area; the t	n of development or sale, otal area to be disturbed;
4. In accordance with the larger common pla enter the total project site area; the t existing impervious area to be disturbed	n of development or sale, otal area to be disturbed; (for redevelopment
4. In accordance with the larger common pla enter the total project site area; the t	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the
4. In accordance with the larger common pla enter the total project site area; the t existing impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest te	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious
4. In accordance with the larger common pla enter the total project site area; the t existing impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest te	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious sisting Impervious Area Within
4. In accordance with the larger common pla enter the total project site area; the t existing impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest te	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious aisting Impervious Area Within ea To Be Disturbed Disturbed Area
4. In accordance with the larger common pla enter the total project site area; the t existing impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest te	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious sisting Impervious Area Within
4. In accordance with the larger common pla enter the total project site area; the t existing impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest te	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area 3 0 1
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest text.) Total Site Total Area To Be Disturbed Area Be Disturbed Area Polytonia Disturbed Area To Be	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area 3 0 1
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest textex. Total Site Total Area To Be Disturbed Area Be Disturbed Area Be Disturbed Area To Be Distu	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area 10.0 30.1 s of soil at any one time? Yes No
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest texacters area bears area bears bears area. 1 9 9 0 7 3 0 5. Do you plan to disturb more than 5 acres bears area. 6. Indicate the percentage of each Hydrology.	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area O O O O O O O O O O O O O O O O O O O
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest textextextextextextextextextextextextext	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area 0 0 0
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest texisting impervious and the future impervious and isturbed area. (Round to the nearest texister in the state of	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area 0 0 0 3 0 1 s of soil at any one time?
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest texacters area bears area bears bears area. 1 9 9 0 7 3 0 5. Do you plan to disturb more than 5 acres bears area. 6. Indicate the percentage of each Hydrology.	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area O O O O O O O O O O O O O O O O O O O
4. In accordance with the larger common pla enter the total project site area; the texisting impervious area to be disturbed activities); and the future impervious a disturbed area. (Round to the nearest texisting impervious and the future impervious and isturbed area. (Round to the nearest texister in the state of	n of development or sale, otal area to be disturbed; (for redevelopment rea constructed within the nth of an acre.) Future Impervious Area Within Disturbed Area O O Sof soil at any one time? O Yes No O Yes No

area?

(9. Identify the nearest surface waterbody(ies) to which construction site runoff will																																					
NT -	discharge. Name																																					
2			~	m	747	_	t		7		~	11	n		f	f		W		i l	1		d	i			h		~	~		t	\top					
H				m		a		_	r		r			0												_				a	е		_ C	<u> </u>				
l Ln	ι е	a	r	d	У		A	C	0	Ε		a	n	d		N	Y	S	L) E	С		W	е	t	1	a	n	d	S	•							Ш
	9a. Type of waterbody identified in Question 9? • Wetland / State Jurisdiction On Site (Answer 9b)																																					
	O Wetland / State Jurisdiction Off Site O Wetland / Federal Jurisdiction On Site (Answer 9b)																																					
	• Wetland / Federal Jurisdiction On Site (Answer 9b)																																					
	O Wetland / Federal Jurisdiction Off Site																																					
	O Stream / Creek On Site																																					
	O Stream / Creek Off Site																																					
	O River On Site																																					
	O River On Site 9b. How was the wetland identified? O River Off Site																																					
	O River Off Site O Lake On Site O Regulatory Map																																					
	O Regulatory Map																																					
	O belineaced by consultant																																					
	O Other Type On Site O Other Type Off Site O Other Type Off Site																																					
	O Other Type Off Site O Other (identify)																																					
						-																																/
	10. Has the surface waterbody(ies) in question 9 been identified as a 303(d) segment in Appendix E of GP-0-15-002?																																					
	11.						roj C c								ne	0	f t	ch∈	3	Wat	er	she	eds	i	.der	nti	fi	ed	ir	l) Y	es		D N	0	
	12.		ar wa	ea: te:	s a	SS		at	ed	W	Ltł	ı Az	A á							ate ssif			d) Y	es	•) N	0	
	13.		ex id	is en	tir tif	ig Tie	imp d a	er	vi an	ous E	01	cove	er or	ar n t	id :he	wh U	ere SDA	e t	ch Sc	cb l ne S oil curb	oi Su	l S rve	Slo	ре		nas	е	is					Y	es	() N	O	
	14.																			a S) fo			lja	ce	nt								Y	es	() N	0	

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?	No 🗨	Unknown								
16.	What is the name of the municipality/entity that owns the separate system?	storm	sewer								
17.	Does any runoff from the site enter a sewer classified O Yes O No • Unknown as a Combined Sewer?										
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?	O Y6	es • No								
19.	Is this property owned by a state authority, state agency, federal government or local government?										
20.											
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?	O Y6	es • No								
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.										
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?	● Ye	es O No								

24.		Th	е.	St	ori	mw a	ate	er	Ро	11u	ıti	on	Pr	ev	ent	cic	n	Pl	an	(S	WP	PP) V	ıas	p:	rep	ar	ed	b _z	у:					
● Professional Engineer (P.E.)																																			
0	○ Soil and Water Conservation District (SWCD)																																		
0	O Registered Landscape Architect (R.L.A)																																		
0	Occupant (Operator)																																		
0	Owner/Operator Other																																		
0	Ot	he	r			_												_		_						_					 	 	 7		
		L																\perp		\perp															
SWPPP		_ [pa:			1		1	Τ.	Τ	Ι_	I			_			<u> </u>			I		Ι	Ι							Ι	 Ι			_
Palı	u	1	u	s	,		S	0	k	0	1	0	W	S	k	i		&		S	a	r	t	0	r	,		L	L	С					\Box
Contac	ct	N	ame	∋ (La	st	,	Spa	ace T	,	Fi	st	.)					I		I	I		I	Ι							I	I			4
Mailir	Ť	A						<u> </u>	Τ.	Т			_		_																П				_
6 7 1	В		M	0	u	n	<u>t</u>	a	j	n		В	1	V	d		Ε	Х	t	•														_	_
City									Τ	T	Ι																				I				
	_		е	n																															\sqcup
State	[Zi] O	7	0	5]		Τ	Τ	Τ]																							
	L	U		0	5	9	_	L																											
Phone 7 3	2	_[5	6	0]_	9	7	0	0										Faz	ζ						_[
Email		-1				_	ك																				_ [
	1																																		=
																																			$-\!$
																																			_

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First Name	MI
Last Name	
Signature	
	Date

25.	Has a construction sequence schedule fo practices been prepared?	r the planned management Yes O No												
26.	Select all of the erosion and sediment employed on the project site:	control practices that will be												
	Temporary Structural	Vegetative Measures												
	O Check Dams	○ Brush Matting												
	\bigcirc Construction Road Stabilization	O Dune Stabilization												
	● Dust Control	○ Grassed Waterway												
	○ Earth Dike	○ Mulching												
	O Level Spreader	O Protecting Vegetation												
	O Perimeter Dike/Swale	O Recreation Area Improvement												
	\bigcirc Pipe Slope Drain	Seeding												
	O Portable Sediment Tank	○ Sodding												
	O Rock Dam	○ Straw/Hay Bale Dike												
	○ Sediment Basin	O Streambank Protection												
	○ Sediment Traps	○ Temporary Swale												
	Silt Fence	○ Topsoiling												
	Stabilized Construction Entrance	○ Vegetating Waterways												
	Storm Drain Inlet Protection	Permanent Structural												
	\bigcirc Straw/Hay Bale Dike	 												
	\bigcirc Temporary Access Waterway Crossing	O Debris Basin												
	\bigcirc Temporary Stormdrain Diversion	O Diversion												
	○ Temporary Swale	○ Grade Stabilization Structure												
	○ Turbidity Curtain	○ Land Grading												
	○ Water bars	○ Lined Waterway (Rock)												
		<pre>O Paved Channel (Concrete)</pre>												
	Biotechnical	O Paved Flume												
	○ Brush Matting	Retaining Wall												
	○ Wattling	Riprap Slope Protection												
	<u> </u>	O Rock Outlet Protection												
Otl	her	O Streambank Protection												

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required
 if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - Preservation of Undisturbed Areas
 - Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - O Roadway Reduction
 - O Sidewalk Reduction
 - O Driveway Reduction
 - O Cul-de-sac Reduction
 - O Building Footprint Reduction
 - O Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the **WQv Required**, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total WQv Required

3 . 7 1 4 acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques (Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required (#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

aper	1			2	6	0
	1					
	1					
	1					
					9	
].]. 			
]. 			
			-			
			_ • _ • _ •			
			_ • _ • _ •			
			- -			
		+	┦•			_
			_ ∙			
			ͺͺ			
			_ .			
].			
			٦.			
		T	Ī.			
		T	١.			
		\top	٦.			
		\top	╡-			
	1	3	,	2	8	1
		+	┤"		+	+
		+	+		+	+
		+	-		+	
	- 1		_ •	<u> </u>	-	
		1	1 3	1 3	1 3 . 2	1 3 2 8

	Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY)	3
Alternative SMP	·	Total Contributing
ATCELITACIVE SMF	·	Impervious Area(acres)
○ Hydrodynamic		
○ Wet Vault		
○ Media Filter		
Other		
Provide the name and manufacturer proprietary practice(s)) being us	,	
Manufacturer		
Note: Redevelopment projects which use questions 28, 29, 33 and WQv required and total WQv r	d 33a to provide SMPs used, tot	
	ided by the RR techniques (Area city identified in question 29.	/Volume Reduction) and
Total RRv provided 1 7 1 3 acre-fee	t	
31. Is the Total RRv provided (stotal WQv required (#28). If Yes, go to question 36. If No, go to question 32.	#30) greater than or equal to t	he O Yes • No
32. Provide the Minimum RRv required = (P)		
Minimum RRv Required 0 9 2 8 acre-fee	t	
32a. Is the Total RRv provided (a Minimum RRv Required (#32)?	#30) greater than or equal to t	he Yes O No
specific site limitations 100% of WQv required (#28 specific site limitations 100% of the WQv required SWPPP. If No, sizing criteria has a	ided in question #39 to summarist and justification for not red 8). A detailed evaluation of the stand justification for not red (#28) must also be included in the stand part of the standard s	ucing he ucing the

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total $\underline{\text{impervious}}$ area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29.

WQv Provided

3 . 4 0 9 acre-feet

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a).

35. Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? \blacksquare Yes \bigcirc No

If Yes, go to question 36.

If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

36. Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

CPv Required CPv Provided acre-feet

36a. The need to provide channel protection has been waived because:

- O Site discharges directly to tidal waters or a fifth order or larger stream.
- O Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.
- 37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development

Post-development

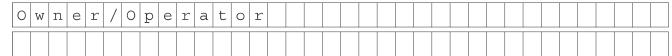
1 9 3 . 4 9 0 _{CFS}

1 6 6 8 7 0 CFS

Total Extreme Flood Control Criteria (Qf)

Pre-Development

Post-development


4 4 0 . 1 0 0 CFS

3 8 3 9 0 0 _{CF}

- 37a. The need to meet the Qp and Qf criteria has been waived because:
 - O Site discharges directly to tidal waters or a fifth order or larger stream.
 - O Downstream analysis reveals that the Qp and Qf controls are not required
- 38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed?

• Yes O No

If Yes, Identify the entity responsible for the long term $\mbox{\it Operation}$ and $\mbox{\it Maintenance}$

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required(#28). (See question 32a)

This space can also be used for other pertinent project information.

Limitations for reducing the entire WQv were that the site contains very steep slopes, has HSG type C soils, and the development was designed to maintain the existing wetland areas, buffers, and storm pond.

The steep slopes along the site make the use of vegetated swales more difficult, and the HSG C soils reduce the impact that infiltration techniques would have (also, creating infiltration areas within these slopes would require more grading, potentially encroaching into wetland buffer areas).

All units were designed to have disconnected rooftop runoff, so the runoff reduction from that technique was fully utilized.

4285089826

40.	Identify other DEC permits, existing and new, that are required for t project/facility.	his		
	O Air Pollution Control			
	○ Coastal Erosion			
	○ Hazardous Waste			
	○ Long Island Wells			
	O Mined Land Reclamation			
	○ Solid Waste			
	O Navigable Waters Protection / Article 15			
	O Water Quality Certificate			
	○ Dam Safety			
	○ Water Supply			
	○ Freshwater Wetlands/Article 24			
	○ Tidal Wetlands			
	○ Wild, Scenic and Recreational Rivers			
	O Stream Bed or Bank Protection / Article 15			
	O Endangered or Threatened Species (Incidental Take Permit)			
	O Individual SPDES			
	O SPDES Multi-Sector GP N Y R			
	O Other			
	O None			
41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	○ Yes	O No	
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	○ Yes	O No	
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	O Yes	O No	
44	If this NOT is being submitted for the purpose of continuing or trans	ferring		

coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. $N \mid Y \mid R$

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI			
Print Last Name				
Owner/Operator Signature				
	Date			

NYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505

MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form

for

Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)

I. Project Owner/Operator Information
1. Owner/Operator Name:
2. Contact Person:
3. Street Address:
4. City/State/Zip:
II. Project Site Information
5. Project/Site Name:
6. Street Address:
7. City/State/Zip:
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information
8. SWPPP Reviewed by:
9. Title/Position:
10. Date Final SWPPP Reviewed and Accepted:
IV. Regulated MS4 Information
11. Name of MS4:
12. MS4 SPDES Permit Identification Number: NYR20A
13. Contact Person:
14. Street Address:
15. City/State/Zip:
16. Telephone Number:

MS4 SWPPP Acceptance Form - continued
V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative
I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.
Printed Name:
Title/Position:
Signature:
Date:
VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

APPENDIX C

SOIL CLASSIFICATIONS & REPORTS

Sullivan County, New York

[Depths of layers are in feet. See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern or that data were not estimated. This report shows only the major soils in each map unit]

Map symbol	Llydrologio			Wate	r table		Ponding		Flooding		
and soil name	Hydrologic group	Surface runoff	Months	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency	
	•		•	Ft	Ft	Ft					
AoC:											
Arnot	C/D		Jan-Dec					None		None	
0	0		In Dec					Name		NI	
Oquaga	С		Jan-Dec					None		None	
AoE:											
Arnot	C/D		Jan-Dec					None		None	
Oquaga	С		Jan-Dec					None		None	
_aB:											
Lackawanna	С		January	1.3-2.9	1.4-3.0			None		None	
			February	1.3-2.9	1.4-3.0			None		None	
			March	1.3-2.9	1.4-3.0			None		None	
			November	1.3-2.9	1.4-3.0			None		None	
			December	1.3-2.9	1.4-3.0			None		None	
₋aC:											
Lackawanna	С		January	1.3-2.9	1.4-3.0			None		None	
			February	1.3-2.9	1.4-3.0			None		None	
			March	1.3-2.9	1.4-3.0			None		None	
			November	1.3-2.9	1.4-3.0			None		None	
			December	1.3-2.9	1.4-3.0			None		None	
MrB:											
Morris	С		January	0.5-1.5	0.8-1.8			None		None	
			February	0.5-1.5	0.8-1.8			None		None	
			March	0.5-1.5	0.8-1.8			None		None	
			November	0.5-1.5	0.8-1.8			None		None	
			December	0.5-1.5	0.8-1.8			None		None	

Mariana	III dedeada da			Wate	r table		Ponding		Floo	oding
Map symbol and soil name	Hydrologic group	Surface runoff	Months	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
			•	Ft	Ft	Ft				•
DeВ:										
Oquaga	С		Jan-Dec					None		None
DgC:										
Oquaga	С		Jan-Dec					None		None
Arnot	C/D		Jan-Dec					None		None
OgD:										
Oquaga	С		Jan-Dec					None		None
Arnot	C/D		Jan-Dec					None		None
Pa:										
Palms	A/D		January	0.0	>6.0	0.0-1.0	Very long	Frequent		None
			February	0.0	>6.0	0.0-1.0	Very long	Frequent		None
			March	0.0	>6.0	0.0-1.0	Very long	Frequent		None
			April	0.0	>6.0	0.0-1.0	Very long	Frequent		None
			May	0.0	>6.0	0.0-1.0	Very long	Frequent		None
			November	0.0	>6.0	0.0-1.0	Very long	Frequent		None
			December	0.0	>6.0	0.0-1.0	Very long	Frequent		None
SeB:										
Morris, extremely stony	С		January	0.5-1.5	0.8-1.8			None		None
			February	0.5-1.5	0.8-1.8			None		None
			March	0.5-1.5	0.8-1.8			None		None
			November	0.5-1.5	0.8-1.8			None		None
			December	0.5-1.5	0.8-1.8			None		None

Man armah al	Ul. alvala sia			Wate	er table		Ponding		Floo	oding
Map symbol and soil name	Hydrologic group	Surface runoff	Months	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequency
				Ft	Ft	Ft				
SeB:										
Scriba, extremely stony	С		January	0.5-1.5	1.0-1.7			None		None
,			February	0.5-1.5	1.0-1.7			None		None
			March	0.5-1.5	1.0-1.7			None		None
			April	0.5-1.5	1.0-1.7			None		None
VeB:										
Wellsboro	С		January	0.8-2.3	1.0-2.5			None		None
			February	0.8-2.3	1.0-2.5			None		None
			March	0.8-2.3	1.0-2.5			None		None
			November	0.8-2.3	1.0-2.5			None		None
			December	0.8-2.3	1.0-2.5			None		None
WeC:										
Wellsboro	С		January	0.8-2.3	1.0-2.5			None		None
			February	0.8-2.3	1.0-2.5			None		None
			March	0.8-2.3	1.0-2.5			None		None
			November	0.8-2.3	1.0-2.5			None		None
			December	0.8-2.3	1.0-2.5			None		None
VIC:										
Wellsboro, extremely stony	С		January	0.8-2.3	1.0-2.5			None		None
			February	0.8-2.3	1.0-2.5			None		None
			March	0.8-2.3	1.0-2.5			None		None
			November	0.8-2.3	1.0-2.5			None		None
			December	0.8-2.3	1.0-2.5			None		None
Wurtsboro, extremely stony	С		January	1.0-1.8	1.6-2.3			None		None
			February	1.0-1.8	1.6-2.3			None		None
			March	1.0-1.8	1.6-2.3			None		None
			November	1.0-1.8	1.6-2.3			None		None
			December	1.0-1.8	1.6-2.3			None		None

Sullivan County, New York

[Absence of an entry indicates that the data were not estimated. This report shows only the major soils in each map unit]

Map symbol			Classi	fication	Fragr	nents	Perd	cent passing	sieve numb	oer	Liquid	Plasticity
and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	limit	index
	In		•		Pct	Pct		•		•	Pct	•
AoC:												
Arnot	0-1	Moderately decomposed plant material	PT	A-8	0-5	0-10						
	1-3	Channery loam	GM, ML, SM	A-2, A-4, A-5	0-5	0-10	40-90	25-80	20-80	15-70	35-45	1-9
	3-17	Very channery loam, very channery silt loam	SM	A-2, A-2-4, A-4	0-5	2-25	40-70	25-50	20-50	15-45	20-35	1-9
	17-21	Unweathered bedrock			0	0						
Oquaga	0-2	Slightly decomposed plant material	PT	A-8	0-5	0-10						
	2-6	Very channery silt loam	GM, ML, SM	A-1, A-2, A-4, A-5	0-5	0-15	45-75	30-60	25-60	20-55	35-45	2-7
	6-36	Very channery loam, very channery silt loam	GC-GM, GM, ML, SM	A-1-b, A-2, A-4	0-5	0-25	45-75	30-60	20-60	20-55	20-30	2-7
	36-40	Unweathered bedrock			0	0						
AoE:												
Arnot	0-1	Moderately decomposed plant material	PT	A-8	0-5	0-10						
	1-3	Channery loam	GM, ML, SM	A-2, A-4, A-5	0-5	0-10	40-90	25-80	20-80	15-70	35-45	1-9
	3-17	Very channery loam, very channery silt loam	SM	A-2, A-2-4, A-4	0-5	2-25	40-70	25-50	20-50	15-45	20-35	1-9
	17-21	Unweathered bedrock			0	0						

Mariana			Classi	fication	Fragr	ments	Per	cent passing	sieve numl	oer	1	District
Map symbol and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	Liquid limit	Plasticity index
	In		•		Pct	Pct				•	Pct	•
AoE:												
Oquaga	0-2	Slightly decomposed plant material	PT	A-8	0-5	0-10						
	2-6	Very channery silt loam	GM, ML, SM	A-1, A-2, A-4, A-5	0-5	0-15	45-75	30-60	25-60	20-55	35-45	2-7
	6-36	Very channery loam, very channery silt loam	GC-GM, GM, ML, SM	A-1-b, A-2, A-4	0-5	0-25	45-75	30-60	20-60	20-55	20-30	2-7
	36-40	Unweathered bedrock			0	0						
LaB:												
Lackawanna	0-2	Moderately decomposed plant material	PT	A-8	0-5	0-5						
	2-5	Channery loam	GM, ML, SC-SM	A-2, A-4	0-5	0-15	55-90	45-75	30-70	20-65	20-34	3-11
	5-34	Channery loam, channery silt loam, very gravelly silt loam	CL, GM, ML, SC	A-1, A-2, A-4, A-6	0-5	0-15	55-90	45-75	35-70	25-65	20-35	1-14
	34-60	Channery loam, very channery sandy loam, silt loam	CL, GM, ML, SC-SM	A-1, A-2, A-4, A-6	0-5	0-20	50-90	35-75	20-70	15-65	15-35	1-12

Man aymbal			Classi	fication	Fragr	nents	Perd	cent passing	sieve numl	oer	Liamid	Diestisitu
Map symbol and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	Liquid limit	Plasticity index
	In		•		Pct	Pct	•	•	•		Pct	•
LaC:												
Lackawanna	0-2	Moderately decomposed plant material	PT	A-8	0-5	0-5						
	2-5	Channery loam	GM, ML, SC-SM	A-2, A-4	0-5	0-15	55-90	45-75	30-70	20-65	20-34	3-11
	5-34	Channery loam, channery silt loam, very gravelly silt loam	CL, GM, ML, SC	A-1, A-2, A-4, A-6	0-5	0-15	55-90	45-75	35-70	25-65	20-35	1-14
	34-60	Channery loam, very channery sandy loam, silt loam	CL, GM, ML, SC-SM	A-1, A-2, A-4, A-6	0-5	0-20	50-90	35-75	20-70	15-65	15-35	1-12
MrB:												
Morris	0-6	Loam	CL, CL-ML, ML	A-4	0-1	0-10	85-95	75-85	60-80	40-70	20-30	1-10
	6-20	Gravelly loam, silt loam	CL, ML, SC-SM	A-4	0-1	0-10	85-95	75-85	60-80	40-70	20-30	1-10
	20-60	Channery silty clay loam, channery silt loam, gravelly loam	CL, GM, SC-SM, SM	A-2, A-4	0-5	0-20	60-90	45-85	35-80	25-70	15-25	NP-9

Map symbol			Classi	fication	Fragr	ments	Perd	cent passing	sieve numl	per	Liquid	Plasticity
and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	limit	index
	In		•		Pct	Pct	•	•		•	Pct	•
OeB:												
Oquaga	0-2	Slightly decomposed plant material	PT	A-8	0-5	0-10						
	2-6	Very channery silt loam	GM, ML, SM	A-1, A-2, A-4, A-5	0-5	0-15	45-75	30-60	25-60	20-55	35-45	2-7
	6-36	Very channery loam, very channery silt loam	GC-GM, GM, ML, SM	A-1-b, A-2, A-4	0-5	0-25	45-75	30-60	20-60	20-55	20-30	2-7
	36-40	Unweathered bedrock			0	0						
OgC:												
Oquaga	0-2	Slightly decomposed plant material	PT	A-8	0-5	0-10						
	2-6	Very channery silt loam	GM, ML, SM	A-1, A-2, A-4, A-5	0-5	0-15	45-75	30-60	25-60	20-55	35-45	2-7
	6-36	Very channery loam, very channery silt loam	GC-GM, GM, ML, SM	A-1-b, A-2, A-4	0-5	0-25	45-75	30-60	20-60	20-55	20-30	2-7
	36-40	Unweathered bedrock			0	0						
Arnot	0-1	Moderately decomposed plant material	PT	A-8	0-5	0-10						
	1-3	Channery loam	GM, ML, SM	A-2, A-4, A-5	0-5	0-10	40-90	25-80	20-80	15-70	35-45	1-9
	3-17	Very channery loam, very channery silt loam	SM	A-1, A-2-4, A-4	0-5	2-25	40-70	25-50	20-50	15-45	20-35	1-9
	17-21	Unweathered bedrock			0	0						

Management			Classi	fication	Fragr	nents	Perd	cent passing	sieve numb	er	المناسبة ا	Disatists
Map symbol and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	- Liquid limit	Plasticity index
	In	•	•		Pct	Pct	•	•	•	•	Pct	
OgD:												
Oquaga	0-2	Slightly decomposed plant material	PT	A-8	0-5	0-10						
	2-6	Very channery silt loam	GM, ML, SM	A-1, A-2, A-4, A-5	0-5	0-15	45-75	30-60	25-60	20-55	35-45	2-7
	6-36	Very channery loam, very channery silt loam	GC-GM, GM, ML, SM	A-1-b, A-2, A-4	0-5	0-25	45-75	30-60	20-60	20-55	20-30	2-7
	36-40	Unweathered bedrock			0	0						
Arnot	0-1	Moderately decomposed plant material	PT	A-8	0-5	0-10						
	1-3	Channery loam	GM, ML, SM	A-2, A-4, A-5	0-5	0-10	40-90	25-80	20-80	15-70	35-45	1-9
	3-17	Very channery loam, very channery silt loam	SM	A-1, A-2-4, A-4	0-5	2-25	40-70	25-50	20-50	15-45	20-35	1-9
	17-21	Unweathered bedrock			0	0						
Pa:												
Palms	0-12	Muck	PT	A-8	0	0						
	12-22	Muck	PT	A-8	0	0						
	22-60	Gravelly fine sandy loam, loam, silt loam	CL, CL-ML, SC, SC-SM	A-2, A-4, A-6, A-7	0	0	85-100	75-100	50-100	30-90	20-45	5-20

Man armshall			Classi	fication	Fragr	nents	Perd	cent passing	sieve numl	oer	المناسبة ا	Disatists
Map symbol and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	- Liquid limit	Plasticity index
	In		•		Pct	Pct			•		Pct	
SeB:												
Morris, extremely stony	0-6	Loam	CL, CL-ML, ML	A-4	1-8	0-10	85-95	75-85	60-80	40-70	20-30	1-10
	6-20	Gravelly loam, silt loam	CL, ML, SC-SM	A-4	0-3	0-10	85-95	75-85	60-80	40-70	20-30	1-10
		Channery silty clay loam, channery silt loam, gravelly loam	CL, GM, SC-SM, SM	A-2, A-4	0-5	0-20	60-90	45-85	35-80	25-70	15-25	NP-9
Scriba, extremely stony	0-2	Slightly decomposed plant material	PT	A-8	1-8	0-10						
	2-8	Loam	CL-ML, ML, SC-SM, SM	A-2, A-4	1-8	0-10	65-92	50-85	35-80	20-70	15-20	NP-5
	8-20	Channery loam, very gravelly sandy loam, silt loam	CL-ML, GM, ML, SM	A-1, A-2, A-4	0-3	0-10	65-92	50-85	30-80	15-70	15-20	NP-5
	20-60	Channery loam, gravelly silt loam, very gravelly sandy loam	CL-ML, GM, ML, SM	A-1, A-2, A-4	0-5	0-15	45-85	30-70	15-65	10-60	15-20	NP-5

Man aymbal			Classi	fication	Fragr	nents	Perd	cent passing	sieve numl	oer	Liauid	Diocticity
Map symbol and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	Liquid limit	Plasticity index
	In		•	•	Pct	Pct		•	•	•	Pct	
WeB:												
Wellsboro	0-7	Gravelly loam	ML, SC-SM	A-2, A-4	0-1	0-10	70-96	60-92	50-85	35-75	20-34	3-11
	7-23	Channery silt loam, gravelly loam, loam	CL-ML, GC- GM, ML, SC-SM	A-2, A-4	0-2	0-15	70-96	60-92	50-85	35-75	15-30	NP-10
	23-60	Channery sandy loam, gravelly loam, silt loam	CL, GM, ML, SC-SM	A-2, A-4	0-5	0-20	55-90	40-80	25-75	10-65	15-30	NP-10
WeC:												
Wellsboro	0-7	Gravelly loam	ML, SC-SM	A-2, A-4	0-1	0-10	70-96	60-92	50-85	35-75	20-34	3-11
	7-23	Channery silt loam, gravelly loam, loam	CL-ML, GC- GM, ML, SC-SM	A-2, A-4	0-2	0-15	70-96	60-92	50-85	35-75	15-30	NP-10
	23-60	Channery sandy loam, gravelly loam, silt loam	CL, GM, ML, SC-SM	A-2, A-4	0-5	0-20	55-90	40-80	25-75	10-65	15-30	NP-10

Map symbol			Classi	fication	Fragr	nents	Perc	ent passing	sieve numb	per	Liquid	Plasticity
and soil name	Depth	USDA texture	Unified	AASHTO	>10 Inches	3-10 Inches	4	10	40	200	limit	index
	In		•		Pct	Pct	•	•	•		Pct	
WIC:												
Wellsboro, extremely stony	0-7	Gravelly loam	ML, SC-SM	A-2, A-4	1-8	0-10	70-96	60-92	50-85	35-75	20-34	3-11
	7-23	Channery silt loam, gravelly loam, loam	CL-ML, GC- GM, ML, SC-SM	A-2, A-4	0-2	0-15	70-96	60-92	50-85	35-75	15-30	NP-10
	23-60	Channery sandy loam, gravelly loam, silt loam	CL, GM, ML, SC-SM	A-2, A-4	0-5	0-20	55-90	40-80	25-75	10-65	15-30	NP-10
Wurtsboro, extremely stony	0-2	Moderately decomposed plant material	PT	A-8	1-8	0-15						
	2-4	Loam	GM, ML, SM	A-2, A-4	1-8	0-15	65-95	50-92	30-85	15-70	22-41	3-11
	4-28	Channery fine sandy loam, gravelly sandy loam, loam	GM, ML	A-2, A-4	0-3	0-15	65-95	50-92	30-85	15-70	15-30	NP-4
	28-60	Gravelly fine sandy loam, very gravelly sandy loam, loam	GM, SM	A-1, A-2, A-4	0-5	0-20	50-92	35-85	15-75	10-60	15-25	NP-4

APPENDIX D

WATER UALITY CALCULATION

		WQv=[(P)(Rv)(A)/12)								1
		Variables:	WQ _v	= water qual	ity volume (ir	n acre-feet)						1
			P			·) NYS Stormwater M	lanagement Design Mani	ual)			1
			R _v	= 0.05 + 0.00	9(I), where I	is percent im	pervious cove	er	,			1
			A	=site area in	acres	T .						1
			I	=impervious	coverage		Figure 4.1. 90%	Rainfall in New York State				1
Note:	A min. of WQv of 0.2 inches per acre sha	III be met at residential	sites that have less	•			1 igure 4.1 30 %	Califal III New Tork State	73	7		1
									1	-		1
See Post Develo	pment Drainage Plan for Water S	heds and Basins:					. و	My NOT	}		•	
Drainage	Area		R _v	Р	WQ _v		, and	PAT POS	À			
Shed	(Ac.)	1	•		•				(h)			
PDA-A	4.59	33.3	0.350	1.15	0.120			The Train		<u> </u>		
PDA-B	5.36	60.5	0.595	1.15	0.239							
PDA-C	7.77	62.0	0.608	1.15	0.354		10.8	心外生	7			1
PDA-D	4.39	40.9	0.418	1.15	0.138			A COM		1		4
PDA-E	6.08	31.2	0.331	1.15	0.151	<u> </u>		(,)-()=	13			4
total	28.190				1.002			= 1/2/2/2	Sant se	.		1
						20 Percent County	le Contour	1.30	No. of the last of			4
	Depth to be 4-6 feet							<i>9</i>	13			4
Volume = 10%	∕₀ WQ _ν											
Orainage Shed	TYPE OF SWM PRACTICE	Volume (ac-ft) (10% WQ _v)	Volume (ft ³) (10% WQ _v)	DEPTH (ft)	Forebay Req'd (sf)	Proposed Area (sf)	Volume (ft ³) Proposed	Volume (ac.ft.) Proposed				
PDA-A	SHALLOW WETLAND	0.012	524	4	131	500	2,000	0.046]
PDA-B	SHALLOW WETLAND	0.024	1,041	3	347	2,100	6,300	0.145				
PDA-C	SHALLOW WETLAND	0.035	1,543	4	386	700	2,100	0.048				
PDA-D	SHALLOW WETLAND	0.014	600	3	200	750	2,250	0.052				
PDA-E	SHALLOW WETLAND	0.015	657	4	164	550	2,200	0.051				_
	total proposed water	<u>er quality ca</u>	pacity in fo	orebays (a	cre-feet)		3.	409				
												$oxed{oxed}$
											APPEN	J L

APPENDIX E

RUNOFF REDUCTION CALCULATION

	T			Г	1	I		T				_
										 	+	
Gan-Eden Sit	e Minimur	n Runoff Redu	ction Volume	Calculatio	n:							
or total 144.46 Ac.	development	area										-
$RRv=[(P)(Rv^*)(Ai)/(Rv^*)]$	/12		Ai=(S)(Aic)									
1, , , , ,			Ai=impervious cover tai	rgeted for runoff r	eduction							
			(Aic)=Total area of new	impervious cove	r,	30.07	Ac.					
			S=Hydrologic Soil Grou	p (HSG) Specific	Reduction Fa	ctor, 0.30 fo	r HSG C					
			P=1.30 , Rv*=0.05 + 0.0	009(I), I is 100% f	or impervious	s, 0.41 for O	riginal					
		2.222	(5		0 = 1.1	(A A -)						
RRv(min.)=		0.928	(Ac-feet)	RRv(max.)=	3.714	(Ac-feet)	ı	T T	1			
										<u> </u>		
		ods, Annalysis										
1. Disconnection	of Roof top R	eduction Calculatio	n									
Building Type	Building No.	Roof top area per	Impervious area	New Impe	ervious	New Rv	New WQv (Ac	% of Reduction Using Disconnection of	WQv Reduction			
		Building (sf)	reduction (sf)	Area (Ac)	Rate (I)		feet)	Rooftop Runoff	(Ac-Feet)	1		
Townhouse	147	1225	180075	` ′	` '	0.400	0.01		1 700			-
Apartment	388	1500	582000	17.49	8.70%	0.128	2.01	45.9%	1.706			
2. Vegetated Swa	le			-								
Total Length (ft)	WQv (Acfeet)	Bottom Width (ft)	Side Slope (H:V)	Swale Slope	Flow Depth (ft)	HSG	% WQv Reductio	Capacity to Runoff Rec	duction (Ac			
1750	0.172	4	4 to 1	4.00%	2	С	10%	0.017				
875	0.125	2	4 to 1	4.00%	2	С	10%	0.013				
Total Runoff Redu	uction (Ac-fee	et) =		1.736								
										<u> </u>		
										Ь	<u> </u>	
											Appe	ndix
											1	

APPENDIX F

VEGETATED SWALES CALCULATION SUMMARY

			٧	'EGET	TATED S	WALE	CAPA	CITY																						
WATER				TRIBU	ITARY DR	AINAGI	E AREA	CALCULA	ATION				R QUAI	ITY VC	LUME CALC	CULATION	Q 10	воттом	. =	воттом	SIDE	MAX.		СН	ECK DAM	1			FILTER ST	RIP
QUALITY	WATER						_					IMPER.	_	_	W	Qv *	10 Yr.	SLOPE	LENGIH	WIDTH	SLOPE	VELOCITY								
SWALE	SHED	IMP	ERVIOU	S	PE	RVIOUS	S		TOT	AL		COVER	Rv	P	TOTAL	10% WQv CF							SPACING	No.#	HEIGHT	WQ		TOTAL	Permeability	
OWALL		sf.	ac.	Ci	sf.	ac.	Ср	sf.	ac.	С	Q	%			ac.ft.	/ Dam	cfs	%	ft.	ft.	(H) to 1(V)	ft/sec.	ft.	110.11	ft.	CF/Dam	sub-total		k (cm/se)	hr.****
D2	BASIN-D	28,920	0.66	0.95	39,905	0.92	0.74	68,825	1.58	0.83	4.84	42.0	0.4282	1.30	0.073	44	5.889	4.0	365	2	2 4	1.61	50	7	2.00	500	3650	SM	0.000025	398
D1	DASIN-D	40,195	0.92	0.95	35,605	0.82	0.74	75,800	1.74	0.85	5.48	53.0	0.5272	1.30	0.099	42	6.667	4.0	510	2	2 4	1.65	50	10	2.00	500	5100	SM	0.000025	398
A1	PDA-X3	39,340	0.90	0.95	254,330	5.84	0.74	293,670	6.74	0.77	19.16	13.4	0.1706	1.30	0.125	16	23.303	4.0	1750	4	4	4.78	50	35	2.00	600	21000	SM	0.000025	398
			2.49			7.57			10.06			WQ VOL. I	REQUIF	ED (ac	.ft)	0.03	TOTAL L	ENGTH	2625	OR	0.50	MILES	PROVIDE	D SWALE	VOLUME	(acft)	0.68			

NOTES:

* WATER QUALITY VOLUME CALCULATION IS BASED ON THE FORMULA AS FOLLOWING:

WQv=[(P)(Rv)(A)/12

Variables:

WQv =water quality volume (in acre-feet)

P =90% Rainfall Event Number (see figure 4.1) NYS Stormwater Management Design Manual)

 $\mathbf{Rv} = 0.05 + 0.009(\mathbf{I})$, where \mathbf{I} is percent impervious cover

A =site area in acres

I =impervious coverage

** MAX. VELOCITY IS BASED ON FlowMaster OF HEASTAD, REFER TO APPENDIX M (The Peak velocity for two-year storm must be non-erosive or less 5.0 fps)

*** PRETREATMENT VOLUME FOR EACH CHECK DAM IS BASED ON ASSUMPTION OF RUNOFF EVENLY DISTRIBUTED.

Volume=L*Ad (Trap Water length * Ave. Dam cross section Area)

= H/SX100 *1/2*H*(d+(d+H*s*2))

 $= 50^{\circ}H^{*}H/S(d+H^{*}s)$

(H=Check Dam Height: d=bottom of width; S=bottom slope: s=side slope)

**** DURATION TIME(<48HR.) IS CALCULATED PER FOR SOIL PERMEABITILY FALLING-HEAD TEST (SOILS CHAPTER, CIVIL ENGINEERING REFERENCE MANUAL)

t=(A'L/Ak)ln(hi/hf)

Variables:

- A' =Area of Pretreament held by Check Dam
- A =Area of every segment between Check Dams
- L =Depth of planting soil
- k =Permeabilty of planting soil (SM)
- hi =Max. head of Pretreament Water (Height of Check Dam plus Depth of Soil)
- hf =Head decreased (Depth of Soil)

APPENDIX F

APPENDIX G

STORMWATER HYDROGRAPHS PRE DEVELOPMENT

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

	Hydrograph	Inflow				Peak Ou	tflow (cfs)				Hydrograph		
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description		
1	SCS Runoff		21.55				61.13			133.62	XDA-1-Discharge-West		
2	SCS Runoff		35.81				115.09			267.66	XDA-2		
3	SCS Runoff		22.65				64.24			140.43	XDA-3		
4	SCS Runoff		6.289				19.92			45.91	XDA-4		
5	Reservoir	3	0.000				0.000			0.000	Existing Pond		
6	Combine	2, 4, 5	41.40				132.36			306.48	Discharge-2 (North)		

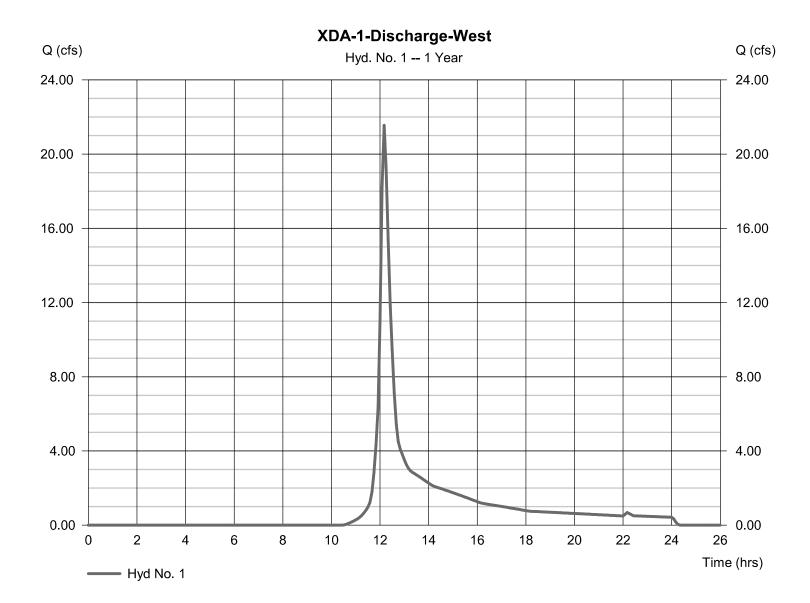
Proj. file: GanEden-Existing.gpw

Friday, 12 / 4 / 2015

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

lyd. Io	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	21.55	5	730	88,992				XDA-1-Discharge-West
2	SCS Runoff	35.81	5	740	189,326				XDA-2
3	SCS Runoff	22.65	5	730	93,528				XDA-3
4	SCS Runoff	6.289	5	730	27,016				XDA-4
5	Reservoir	0.000	5	n/a	0	3	1481.04	93,528	Existing Pond
6	Combine	41.40	5	735	216,342	2, 4, 5		_	Discharge-2 (North)
Gai	 nEden-Existir	ng.gpw			Return F	Period: 1 Ye	 ear	Friday, 12	/ 4 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 1

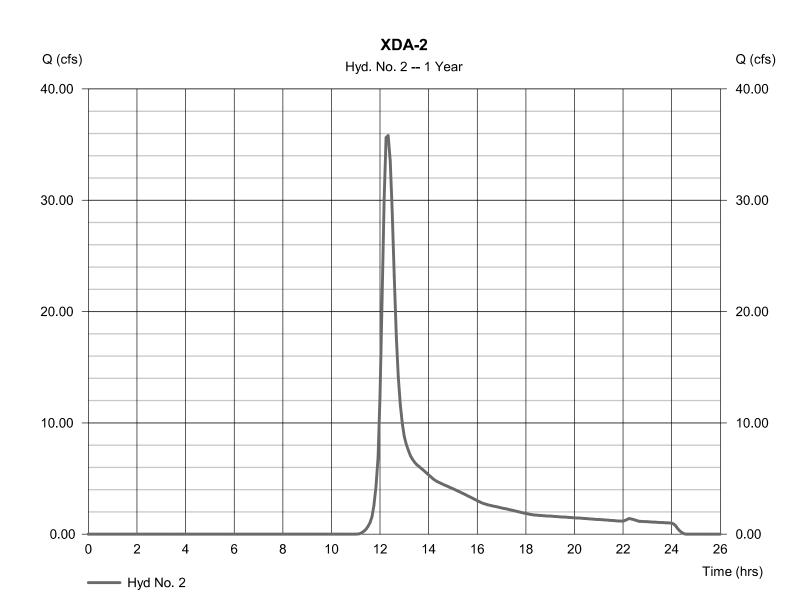
XDA-1-Discharge-West

Hydrograph type = SCS Runoff Peak discharge = 21.55 cfsStorm frequency = 1 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 88.992 cuft Drainage area = 30.020 acCurve number = 79* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.50 \, \text{min}$ = TR55 Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(33.070 x 79)] / 30.020

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015


Hyd. No. 2

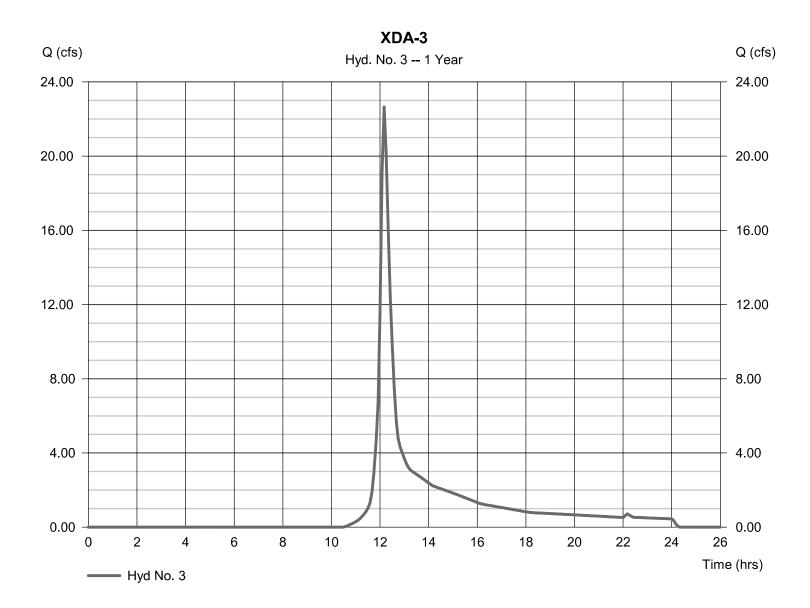
XDA-2

Hydrograph type = SCS Runoff Peak discharge = 35.81 cfsStorm frequency = 1 yrsTime to peak $= 12.33 \, hrs$ Time interval = 5 min Hyd. volume = 189,326 cuft = 76* Drainage area = 71.940 acCurve number = 0.0 % Hydraulic length = 0 ftBasin Slope

Tc method = TR55 Time of conc. (Tc) = 21.20 min
Total precip. = 2.55 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(71.190 x 76)] / 71.940

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 3

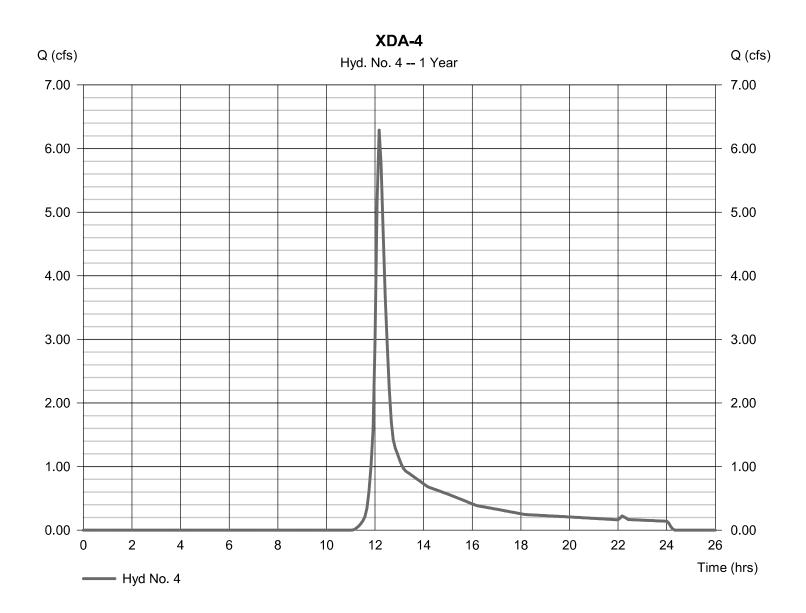
XDA-3

Hydrograph type = SCS Runoff Peak discharge = 22.65 cfsStorm frequency = 1 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 93.528 cuft Drainage area = 31.550 acCurve number = 79* Hydraulic length = 0 ftBasin Slope = 0.0 % Tc method Time of conc. (Tc) $= 9.70 \, \text{min}$ = TR55 Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(33.240 x 79)] / 31.550

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015


Hyd. No. 4

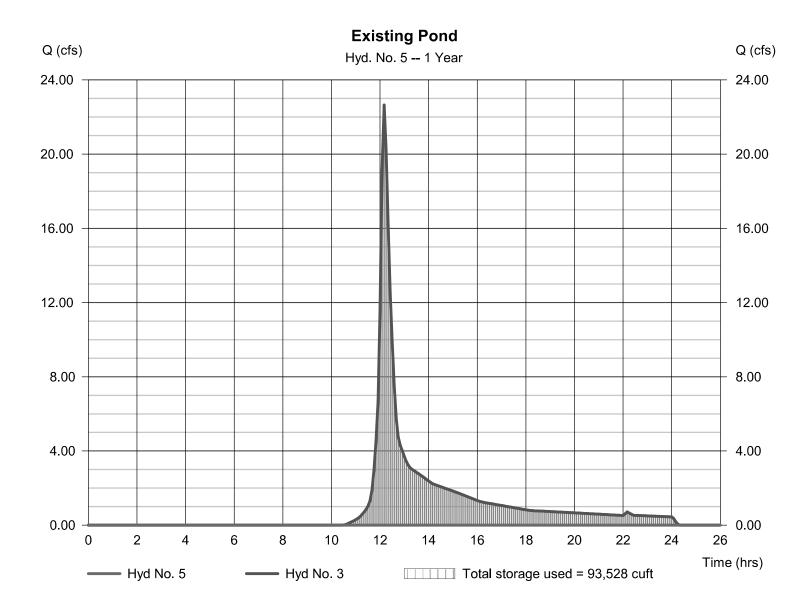
XDA-4

Hydrograph type = SCS Runoff Peak discharge = 6.289 cfsStorm frequency = 1 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 27.016 cuft Drainage area = 10.950 acCurve number = 76* Hydraulic length = 0 ftBasin Slope = 0.0 % Tc method Time of conc. (Tc) = 13.60 min = TR55 Total precip. = 2.55 inDistribution = Type III

Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(95.390 x 76)] / 10.950

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

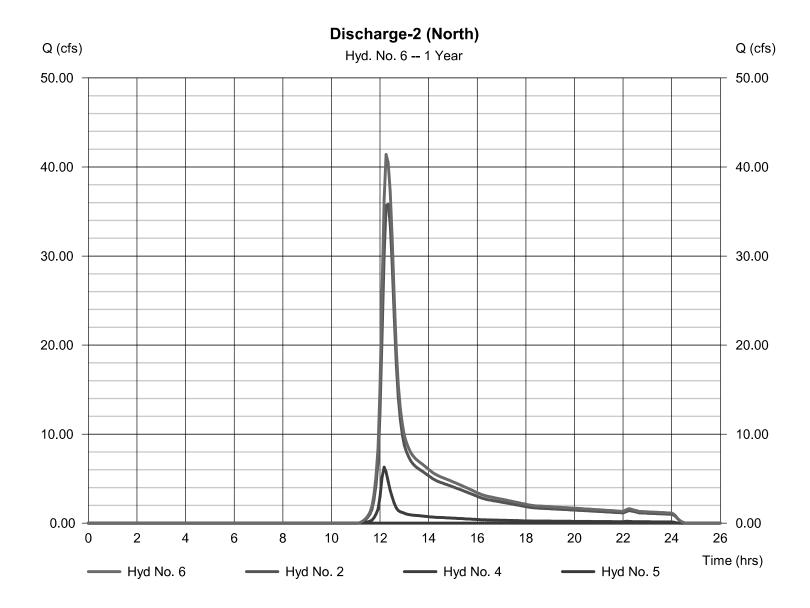

Friday, 12 / 4 / 2015

Hyd. No. 5

Existing Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 1 yrsTime to peak = n/aTime interval = 5 min Hyd. volume = 0 cuftInflow hyd. No. = 3 - XDA - 3Max. Elevation = 1481.04 ft = Ex Pond Max Storage = 93,528 cuft Reservoir name

Storage Indication method used.


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 6

Discharge-2 (North)

Hydrograph type = Combine Peak discharge = 41.40 cfsStorm frequency = 1 yrsTime to peak $= 12.25 \, hrs$ Time interval = 5 min Hyd. volume = 216,342 cuft Inflow hyds. = 2, 4, 5Contrib. drain. area = 82.890 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

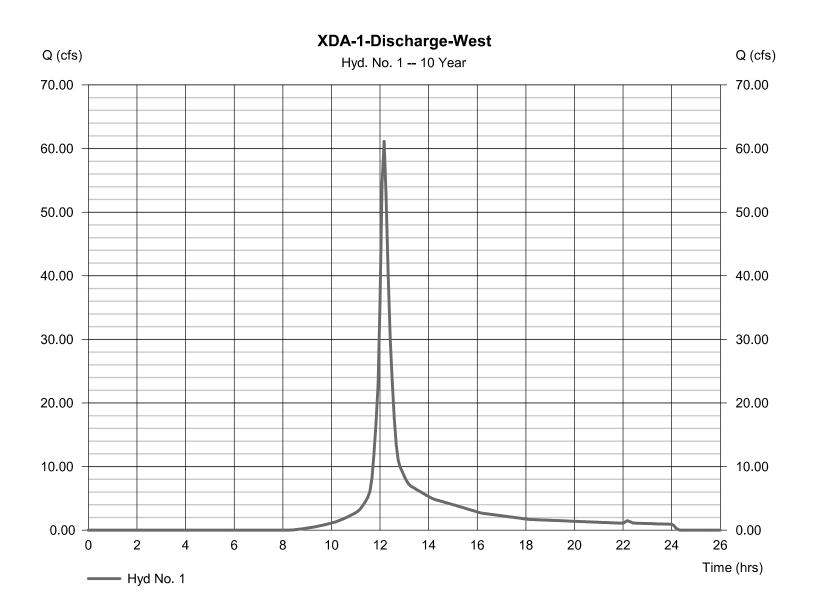
lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	61.13	5	730	242,784				XDA-1-Discharge-West
2	SCS Runoff	115.09	5	735	556,181				XDA-2
3	SCS Runoff	64.24	5	730	255,157				XDA-3
4	SCS Runoff	19.92	5	730	79,365				XDA-4
5	Reservoir	0.000	5	n/a	0	3	1482.84	255,158	Existing Pond
6	Combine	132.36	5	735	635,546	2, 4, 5	_	_	Discharge-2 (North)
Gar	nEden-Existir	ng.apw			Return F	Period: 10 \	/ear	Friday, 12	/ 4 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 1

XDA-1-Discharge-West


Hydrograph type = SCS Runoff Peak discharge = 61.13 cfsStorm frequency = 10 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 242.784 cuft Drainage area = 30.020 acCurve number = 79*

Basin Slope = 0.0 % Curve number = 79*

Hydraulic length = 0 ft

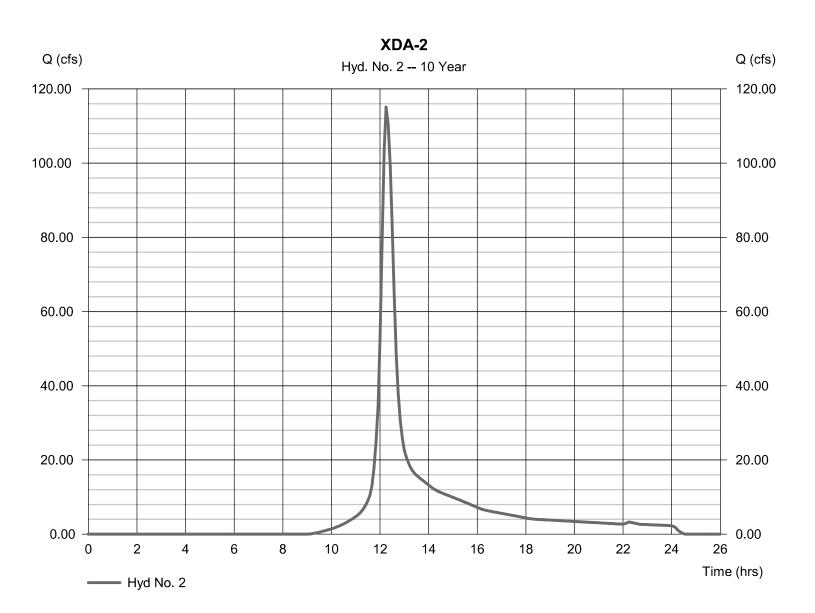
Tc method = TR55 Time of conc. (Tc) = 12.50 min
Total precip. = 4.50 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(33.070 x 79)] / 30.020

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 2


XDA-2

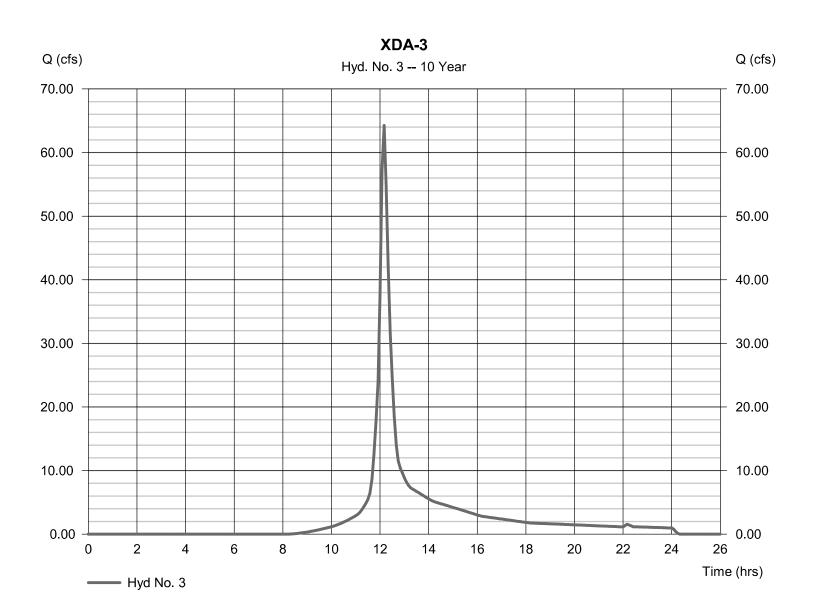
Hydrograph type = SCS Runoff Peak discharge = 115.09 cfsStorm frequency = 10 yrsTime to peak $= 12.25 \, hrs$ Time interval = 5 min Hyd. volume = 556.181 cuft = 76* Drainage area = 71.940 acCurve number

= 0.0 % Hydraulic length Basin Slope = 0 ft

Tc method Time of conc. (Tc) = 21.20 min = TR55 Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(71.190 x 76)] / 71.940

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

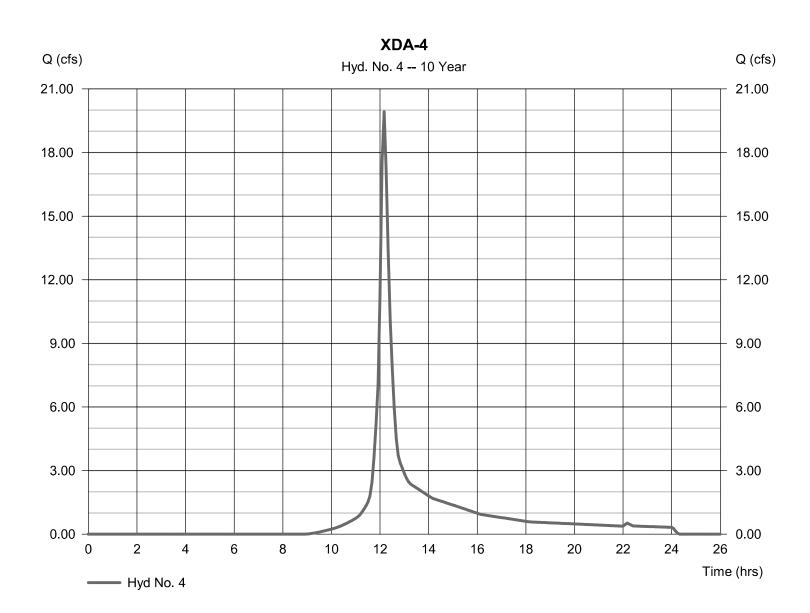
Hyd. No. 3

XDA-3

Hydrograph type = SCS Runoff Peak discharge = 64.24 cfsStorm frequency = 10 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 255.157 cuft Drainage area = 31.550 acCurve number = 79* = 0.0 % Hydraulic length = 0 ftBasin Slope Tc method = TR55 Time of conc. (Tc) $= 9.70 \, \text{min}$ Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(33.240 x 79)] / 31.550

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

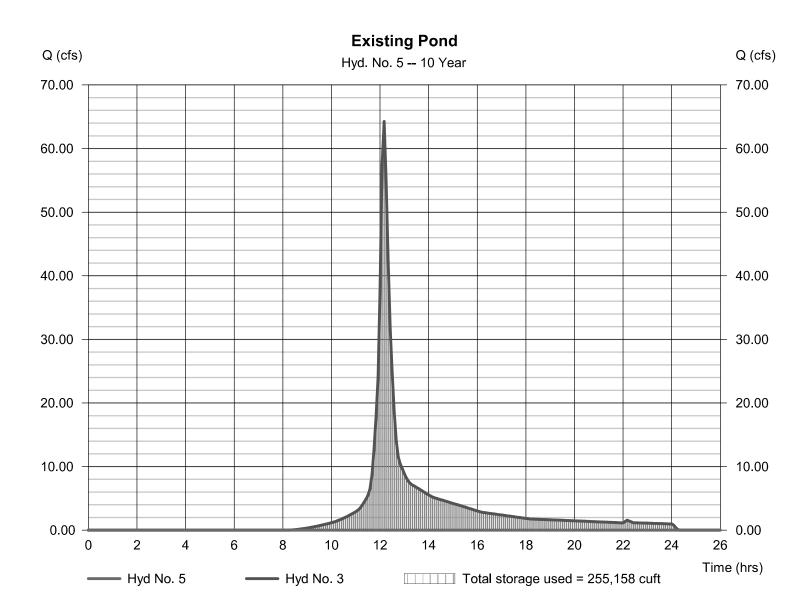

Friday, 12 / 4 / 2015

Hyd. No. 4

XDA-4

Hydrograph type = SCS Runoff Peak discharge = 19.92 cfsStorm frequency = 10 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 79.365 cuft Drainage area = 10.950 acCurve number = 76* Basin Slope Hydraulic length = 0 ft= 0.0 % Tc method = TR55 Time of conc. (Tc) = 13.60 min Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(95.390 x 76)] / 10.950

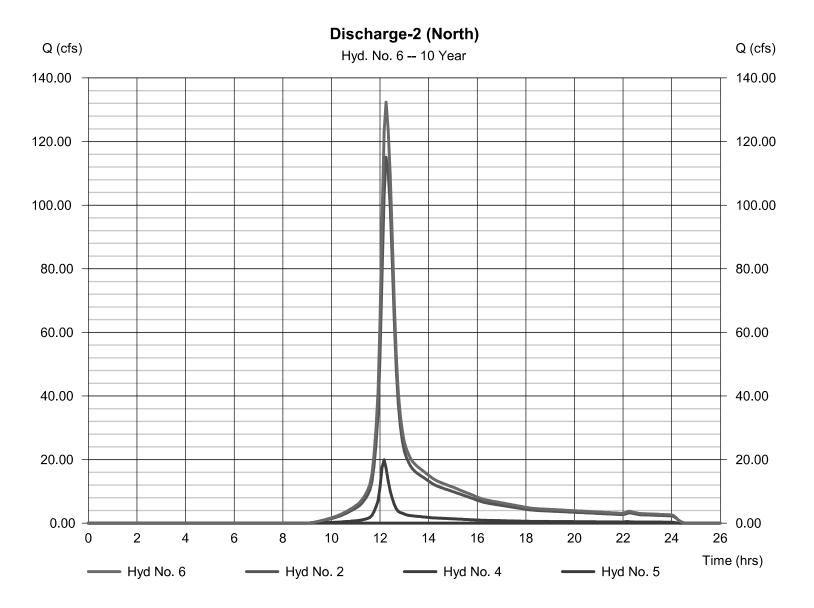

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 5

Existing Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 10 yrsTime to peak = n/aTime interval = 5 min Hyd. volume = 0 cuftInflow hyd. No. = 3 - XDA - 3Max. Elevation = 1482.84 ft = Ex Pond Reservoir name Max. Storage = 255,158 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 6

Discharge-2 (North)

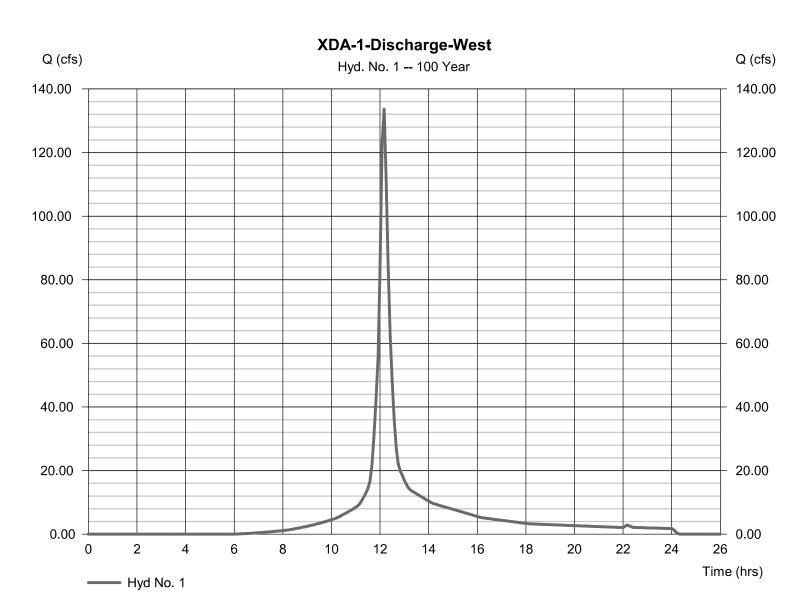
Hydrograph type = Combine Peak discharge = 132.36 cfsStorm frequency Time to peak = 10 yrs $= 12.25 \, hrs$ Time interval = 5 min Hyd. volume = 635,546 cuft Inflow hyds. = 2, 4, 5Contrib. drain. area = 82.890 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	133.62	5	730	538,962				XDA-1-Discharge-West	
2	SCS Runoff	267.66	5	735	1,287,675				XDA-2	
3	SCS Runoff	140.43	5	730	566,430				XDA-3	
4	SCS Runoff	45.91	5	730	183,747				XDA-4	
5	Reservoir	0.000	5	n/a	0	3	1486.29	566,430	Existing Pond	
6	Combine	306.48	5	735	1,471,422	2, 4, 5	_	_	Discharge-2 (North)	
GanEden-Existing.gpw					Return P	eriod: 100	Year	Friday, 12	Friday, 12 / 4 / 2015	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015


Hyd. No. 1

XDA-1-Discharge-West

Hydrograph type = SCS Runoff Peak discharge = 133.62 cfsStorm frequency = 100 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 538.962 cuft Drainage area = 30.020 acCurve number = 79* Basin Slope = 0.0 % Hydraulic length = 0 ft

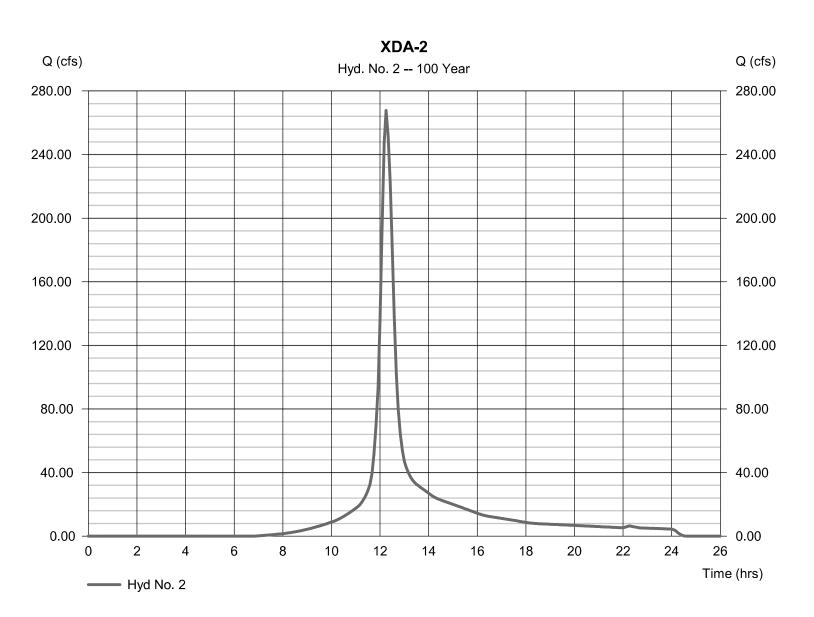
Tc method = TR55 Time of conc. (Tc) = 12.50 min
Total precip. = 7.75 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(33.070 x 79)] / 30.020

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 2


XDA-2

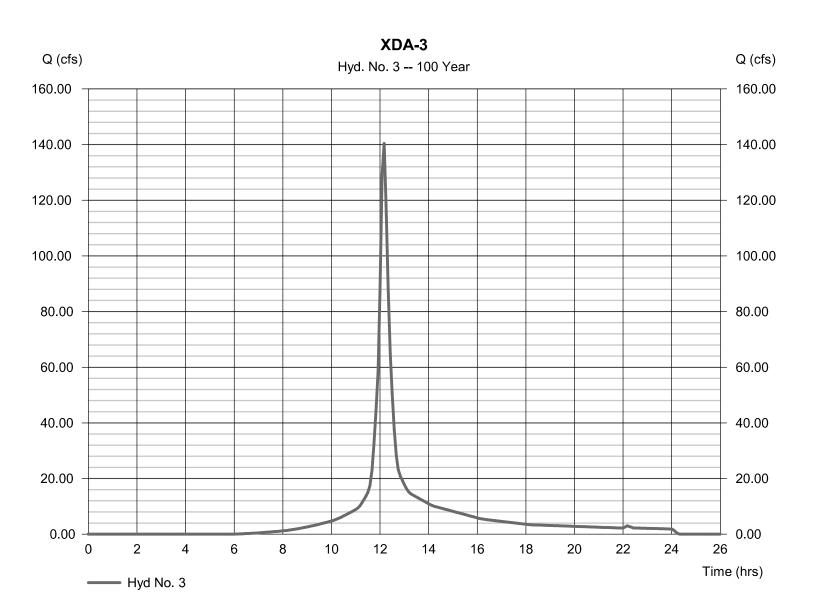
Hydrograph type = SCS Runoff Peak discharge = 267.66 cfsStorm frequency = 100 yrsTime to peak $= 12.25 \, hrs$ Time interval = 5 min Hyd. volume = 1,287,675 cuft Drainage area = 71.940 acCurve number = 76*

Basin Slope = 0.0 % Hydraulic length = 0 ft

Tc method = TR55 Time of conc. (Tc) = 21.20 min
Total precip. = 7.75 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(71.190 x 76)] / 71.940

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 3

XDA-3

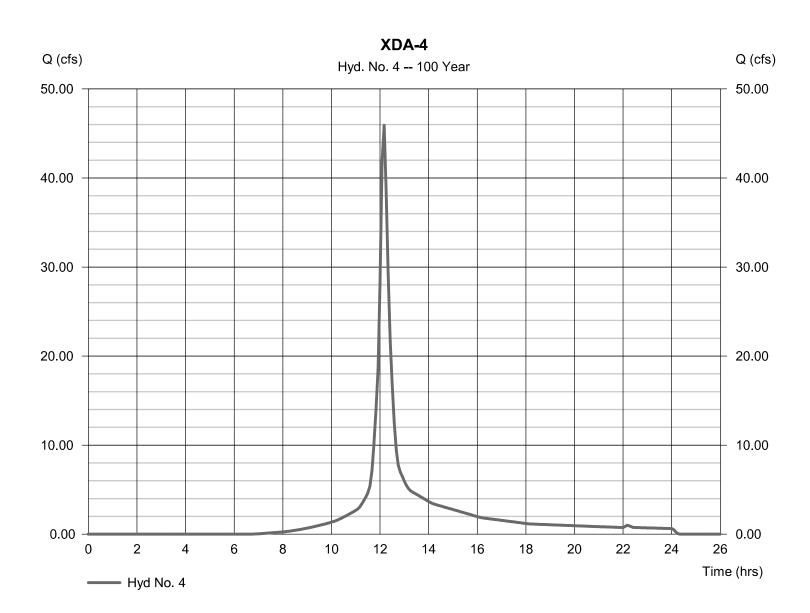
Hydrograph type = SCS Runoff Peak discharge = 140.43 cfsStorm frequency = 100 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 566.430 cuft Drainage area = 31.550 acCurve number = 79* = 0.0 % Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 9.70 \, \text{min}$ = TR55 Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(33.240 x 79)] / 31.550

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 4

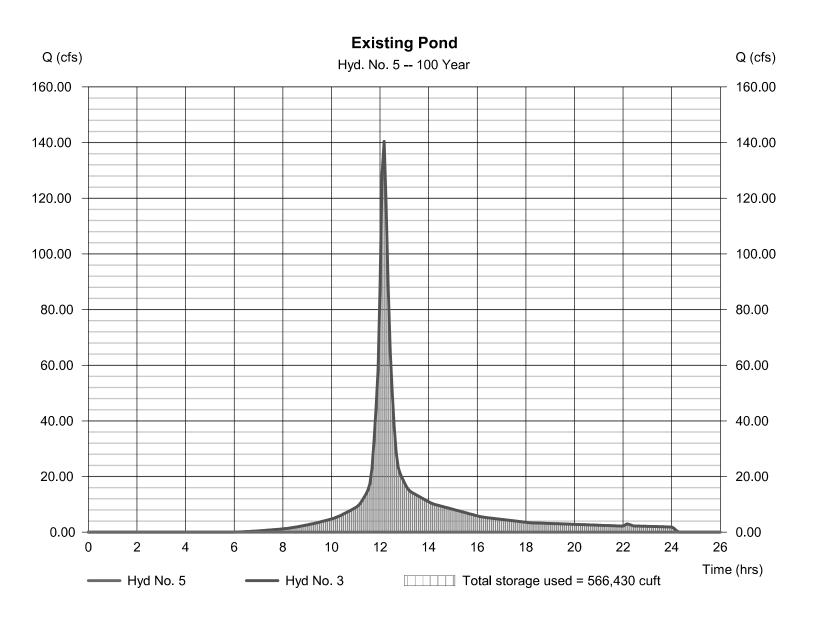

XDA-4

Hydrograph type = SCS Runoff Peak discharge = 45.91 cfsStorm frequency = 100 yrsTime to peak = 12.17 hrsTime interval = 5 min Hyd. volume = 183.747 cuft Drainage area = 10.950 acCurve number = 76*

= 0.0 % = 0 ftBasin Slope Hydraulic length

Tc method Time of conc. (Tc) = 13.60 min = TR55 Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(95.390 x 76)] / 10.950


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

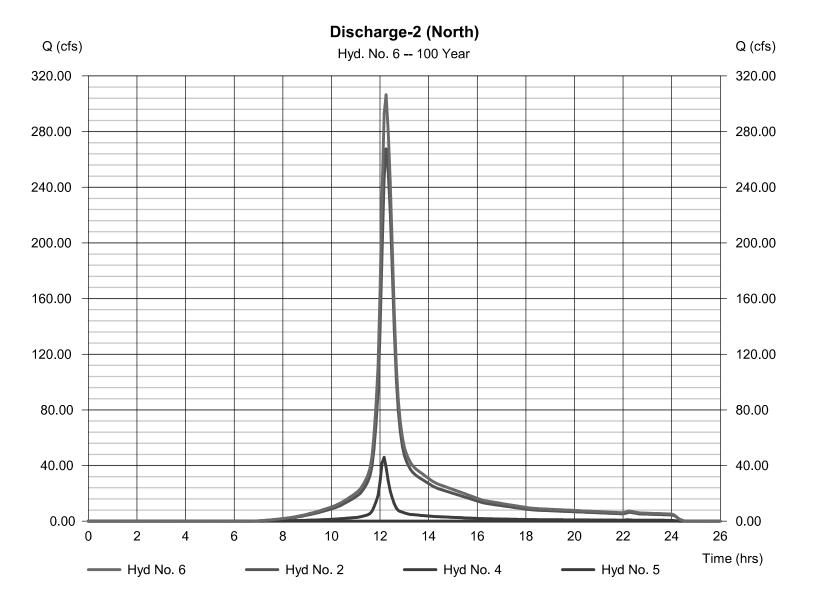
Friday, 12 / 4 / 2015

Hyd. No. 5

Existing Pond

Hydrograph type Peak discharge = Reservoir = 0.000 cfsStorm frequency = 100 yrsTime to peak = n/aTime interval = 5 min Hyd. volume = 0 cuftInflow hyd. No. = 3 - XDA - 3Max. Elevation = 1486.29 ft = Ex Pond Reservoir name Max. Storage = 566,430 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 6

Discharge-2 (North)

Hydrograph type = Combine
Storm frequency = 100 yrs
Time interval = 5 min
Inflow hyds. = 2, 4, 5

Peak discharge = 306.48 cfs
Time to peak = 12.25 hrs
Hyd. volume = 1,471,422 cuft
Contrib. drain. area = 82.890 ac

APPENDIX H

STORMWATER HYDROGRAPHS POST DEVELOPMENT

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Inflow hyd(s)	Peak Outflow (cfs)								Hydrograph
			1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		4.010				10.35			21.54	PDA_A
2	SCS Runoff		6.868				14.71			27.71	PDA_B
3	SCS Runoff		8.580				28.35			66.57	PDA_Swale-A1
4	SCS Runoff		27.71				87.79			202.32	PDA_X2
5	SCS Runoff		9.955				21.33			40.18	PDA_C
6	SCS Runoff		0.768				2.179			4.762	PDA_D
7	SCS Runoff		2.017				4.542			8.785	PDA_Swale-D1
8	SCS Runoff		1.555				3.790			7.652	PDA_Swale-D2
9	SCS Runoff		10.54				32.10			72.64	PDA_X3
10	SCS Runoff		4.988				13.26			28.05	PDA_E
11	SCS Runoff		12.61				41.67			97.84	PDA_X1
12	SCS Runoff		5.808				19.19			45.06	PDA_X4
13	Reach	3	3.350				12.92			33.65	Swale-A1
14	Reach	7	1.083				2.359			4.434	Swale-D1
15	Reach	8	0.976				2.298			4.515	Swale-D2
16	Combine	6, 14, 15	2.539				5.974			11.84	PDA_Basin D
17	Reservoir	1	0.220				0.372			5.139	Basin A
18	Reservoir	2	0.242				0.372			3.873	Basin B
19	Reservoir	5	1.808				12.20			17.68	Basin C
20	Reservoir	16	0.281				1.490			8.657	Basin-D
21	Reservoir	10	0.172				0.304			1.052	Basin E
22	Combine	9, 20,	10.65				32.34			73.02	PDA_Ex Pond
23	Reservoir	22	0.000				0.000			0.329	Existing Pond
24	Combine	12, 17, 18,	6.345				29.77			61.62	trans
	Combine	19, 11, 21,	12.68				41.86			98.15	Discharge 1 (West)
25		4, 13, 23,	35.44				125.01			285.75	Discharge 2 (North)

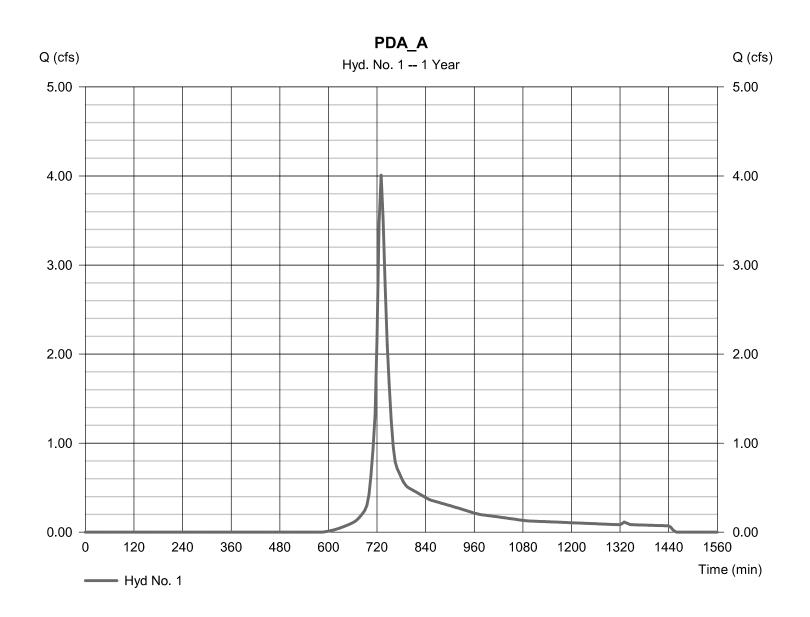
Proj. file: GanEden-Prop.gpw

Friday, 12 / 4 / 2015

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.010	5	730	16,165				PDA_A
2	SCS Runoff	6.868	5	730	27,334				PDA_B
3	SCS Runoff	8.580	5	730	37,531				PDA_Swale-A1
4	SCS Runoff	27.71	5	730	119,044				PDA_X2
5	SCS Runoff	9.955	5	730	39,624				PDA_C
6	SCS Runoff	0.768	5	730	3,172				PDA_D
7	SCS Runoff	2.017	5	730	8,012				PDA_Swale-D1
8	SCS Runoff	1.555	5	730	6,210				PDA_Swale-D2
9	SCS Runoff	10.54	5	730	44,575				PDA_X3
10	SCS Runoff	4.988	5	730	20,240				PDA_E
11	SCS Runoff	12.61	5	730	55,162				PDA_X1
12	SCS Runoff	5.808	5	730	25,406				PDA_X4
13	Reach	3.350	5	755	37,501	3			Swale-A1
14	Reach	1.083	5	745	7,993	7			Swale-D1
15	Reach	0.976	5	745	6,199	8			Swale-D2
16	Combine	2.539	5	740	17,364	6, 14, 15			PDA_Basin D
17	Reservoir	0.220	5	955	16,116	1	1386.07	9,801	Basin A
18	Reservoir	0.242	5	1020	27,255	2	1376.26	19,222	Basin B
19	Reservoir	1.808	5	765	39,581	5	1486.28	20,348	Basin C
20	Reservoir	0.281	5	940	17,334	16	1496.65	9,943	Basin-D
21	Reservoir	0.172	5	1080	20,133	10	1495.71	14,078	Basin E
22	Combine	10.65	5	730	61,909	9, 20,			PDA_Ex Pond
23	Reservoir	0.000	5	n/a	0	22	1485.69	61,909	Existing Pond
24	Combine	6.345	5	730	108,358	12, 17, 18,			trans
25	Combine	12.68	5	730	75,295	19, 11, 21,			Discharge 1 (West)
26	Combine	35.44	5	730	264,904	4, 13, 23, 24,			Discharge 2 (North)
GanEden-Prop.gpw					Return F	eriod: 1 Ye	 ear	Friday, 12	/ 4 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

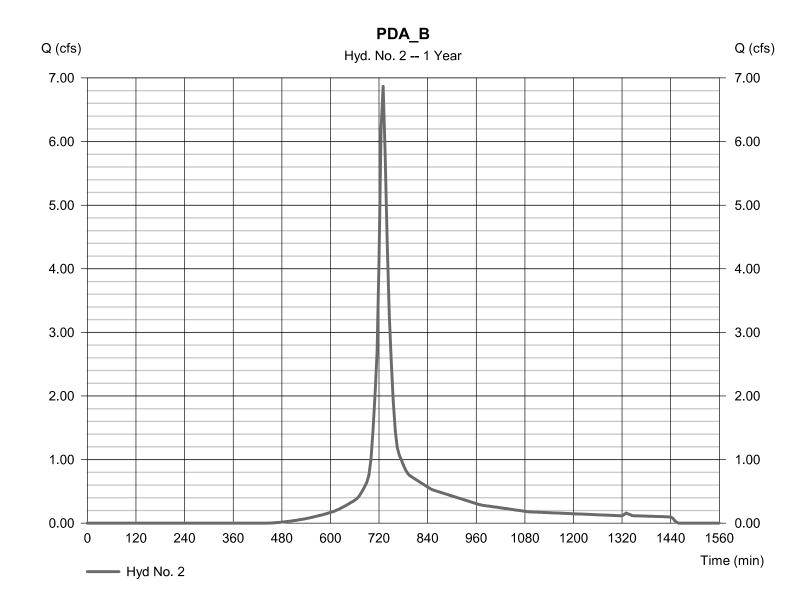

Friday, 12 / 4 / 2015

Hyd. No. 1

PDA_A

Hydrograph type = SCS Runoff Peak discharge = 4.010 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 16,165 cuft = 4.590 acCurve number Drainage area = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 4.590$


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

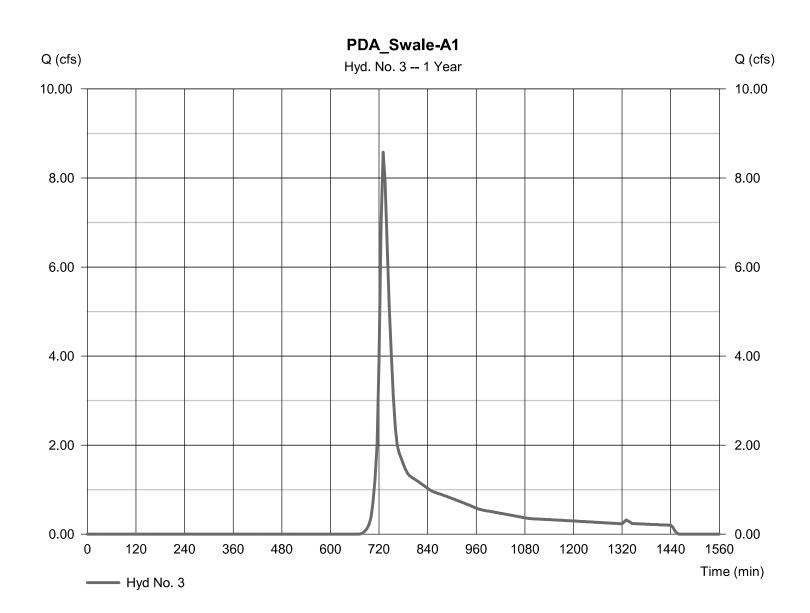
Friday, 12 / 4 / 2015

Hyd. No. 2

PDA B

= 6.868 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 27,334 cuftDrainage area = 5.360 acCurve number = 89 Basin Slope Hydraulic length = 0 ft= 0.0 % Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 3

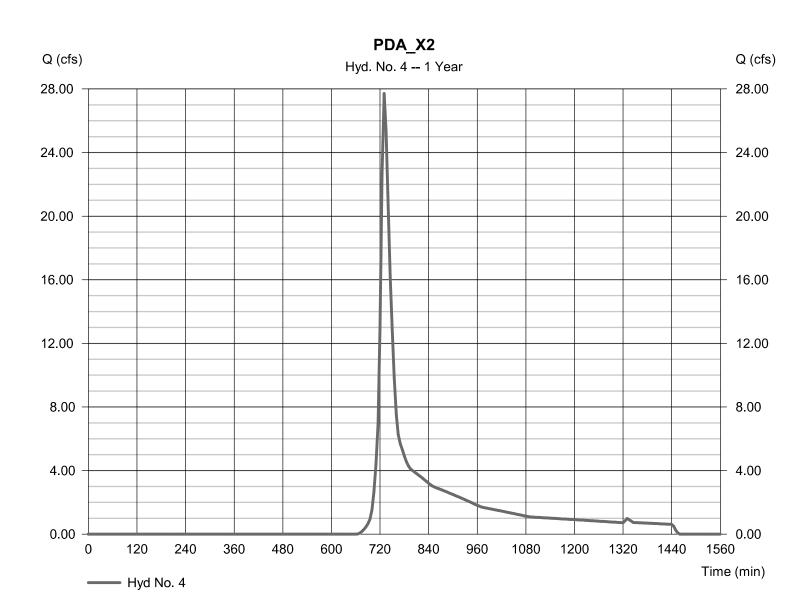
PDA_Swale-A1

Hydrograph type = SCS Runoff Peak discharge = 8.580 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 37.531 cuft Drainage area = 16.220 acCurve number = 75* = 0 ftBasin Slope = 0.0 % Hydraulic length Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 16.220$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015


Hyd. No. 4

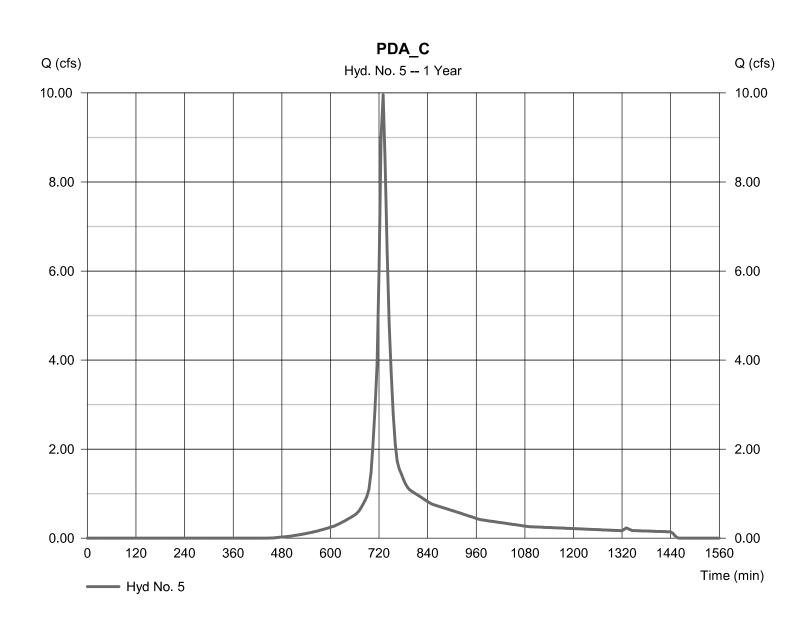
PDA_X2

Hydrograph type = SCS Runoff Peak discharge = 27.71 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 119.044 cuft Drainage area = 48.250 acCurve number = 76*

Tc method= UserTime of conc. (Tc)= 10.00 minTotal precip.= 2.55 inDistribution= Type IIIStorm duration= 24 hrsShape factor= 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 48.250

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

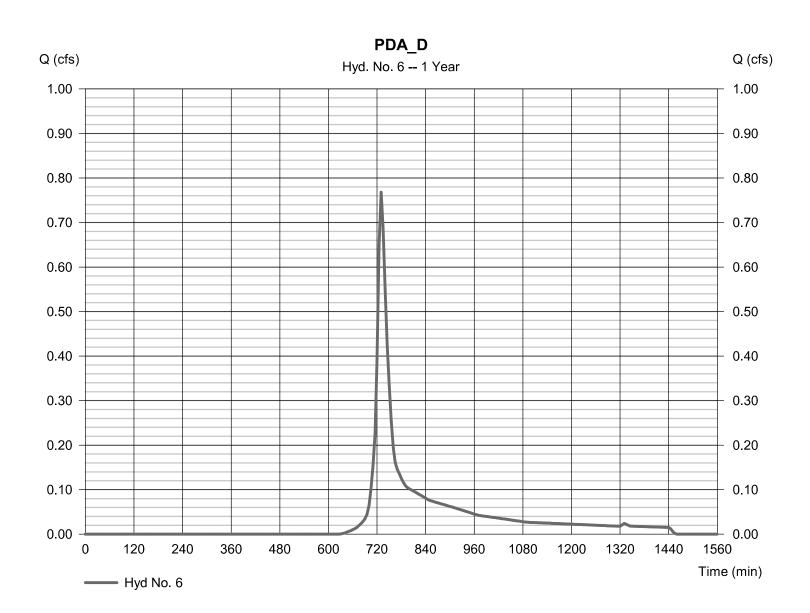
Hyd. No. 5

PDA_C

Hydrograph type = SCS Runoff Peak discharge = 9.955 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 39.624 cuft Drainage area = 7.770 acCurve number = 89* Hydraulic length Basin Slope = 0.0 % = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 7.770$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 6

PDA_D

Hydrograph type = SCS Runoff Peak discharge = 0.768 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 3,172 cuft= 79* Drainage area = 1.070 acCurve number Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 1.070

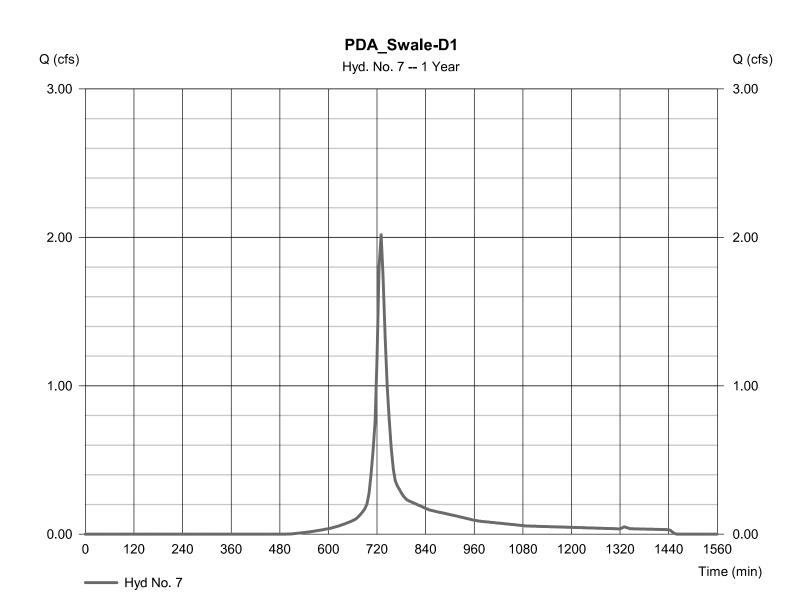
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

= 24 hrs

Friday, 12 / 4 / 2015

= 484

Hyd. No. 7

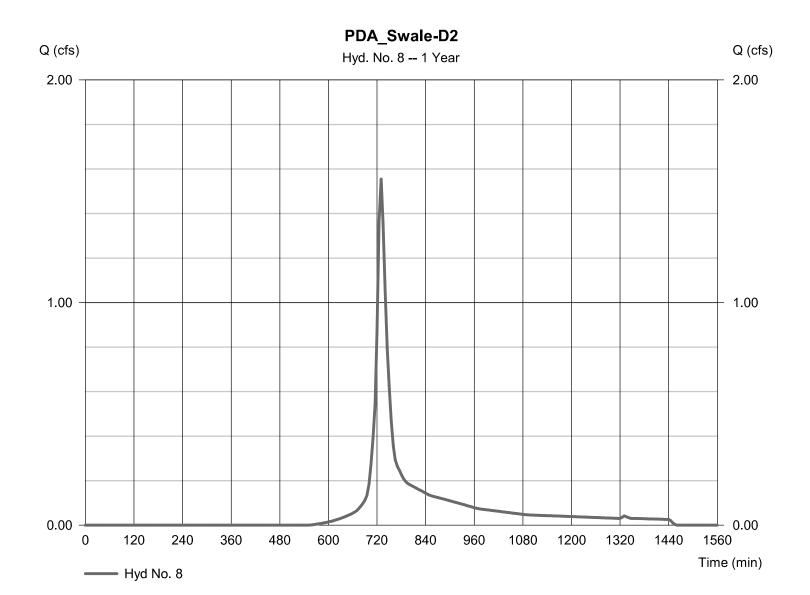

PDA_Swale-D1

Storm duration

= 2.017 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 8,012 cuft= 1.740 acCurve number = 87* Drainage area Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III

Shape factor

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 1.740$


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

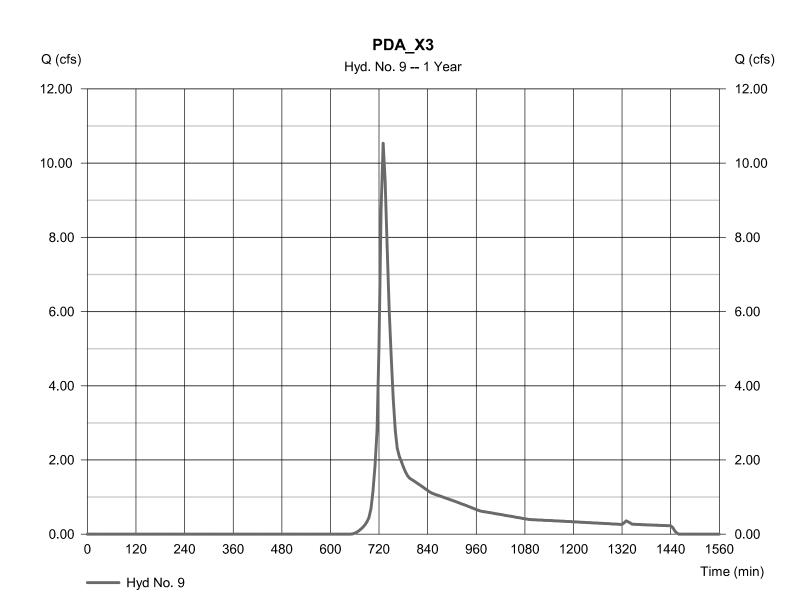
Friday, 12 / 4 / 2015

Hyd. No. 8

PDA_Swale-D2

Hydrograph type = SCS Runoff Peak discharge = 1.555 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 6,210 cuftDrainage area = 1.580 acCurve number = 84 Basin Slope Hydraulic length = 0 ft= 0.0 % Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

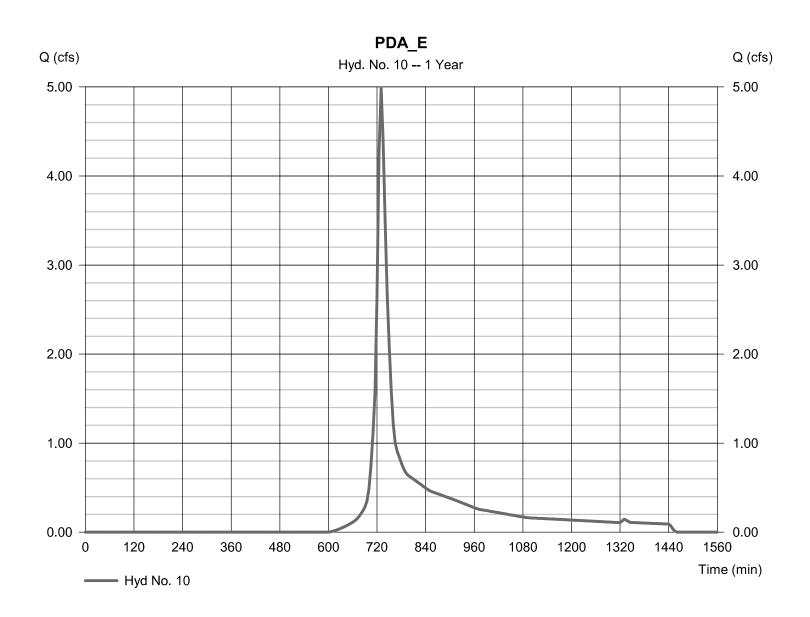
Hyd. No. 9

PDA_X3

Hydrograph type = SCS Runoff Peak discharge = 10.54 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 44,575 cuft= 77* Drainage area = 16.970 ac Curve number Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 16.970

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

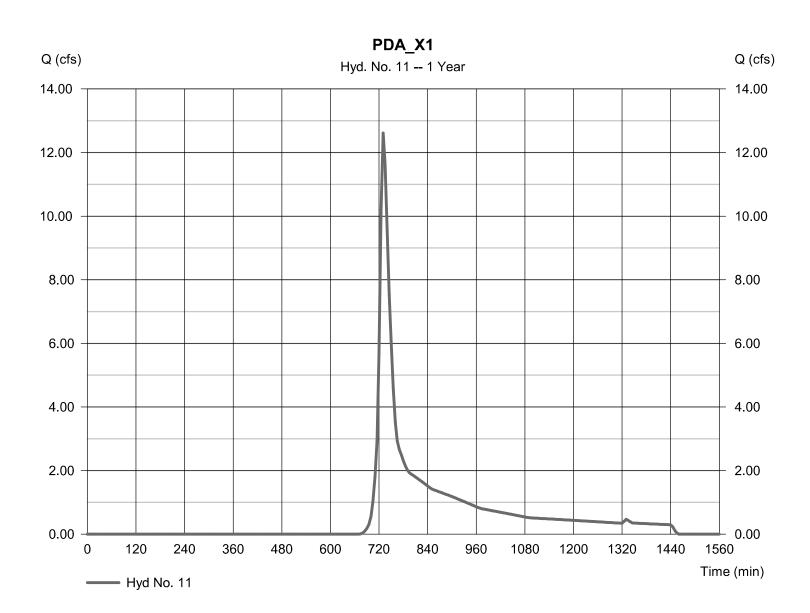
Hyd. No. 10

PDA_E

Hydrograph type = SCS Runoff Peak discharge = 4.988 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 20.240 cuft = 6.080 acCurve number = 81* Drainage area Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 6.080$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

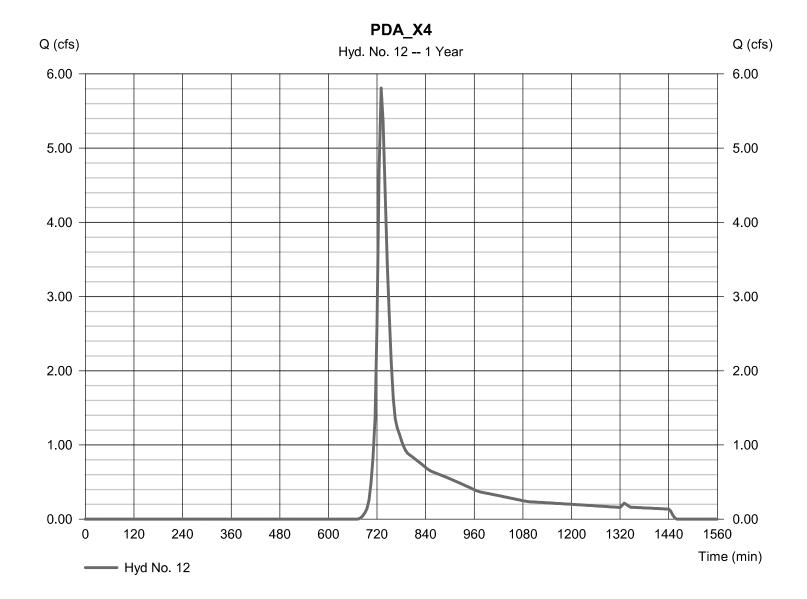

Friday, 12 / 4 / 2015

Hyd. No. 11

PDA_X1

Hydrograph type = SCS Runoff Peak discharge = 12.61 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 55.162 cuft Drainage area = 23.840 acCurve number = 75* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 23.840


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

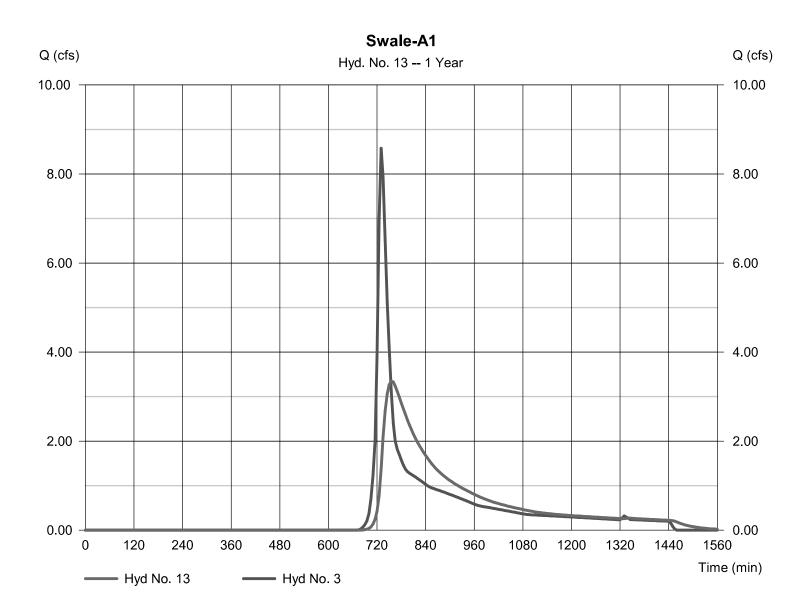
Friday, 12 / 4 / 2015

Hyd. No. 12

PDA_X4

= 5.808 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 25.406 cuft Drainage area Curve number = 75 = 10.980 ac= 0 ftBasin Slope = 0.0 % Hydraulic length Tc method Time of conc. (Tc) = 13.60 min = User Total precip. = 2.55 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

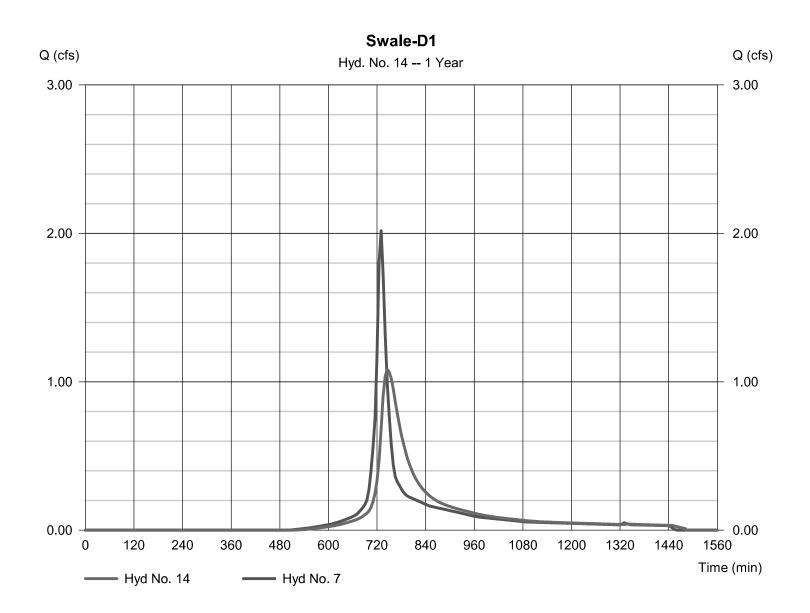
Hyd. No. 13

Swale-A1

Peak discharge Hydrograph type = 3.350 cfs= Reach Storm frequency = 1 yrsTime to peak = 755 min Time interval = 5 min Hyd. volume = 37.501 cuft= 3 - PDA_Swale-A1 Inflow hyd. No. Section type = Trapezoidal Reach length Channel slope = 5.0 % = 1750.0 ftBottom width = 4.0 ftManning's n = 0.500Side slope Max. depth = 2.0 ft= 4.0:1Rating curve x = 0.264Rating curve m = 1.224Ave. velocity Routing coeff. = 0.50 ft/s= 0.0997

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

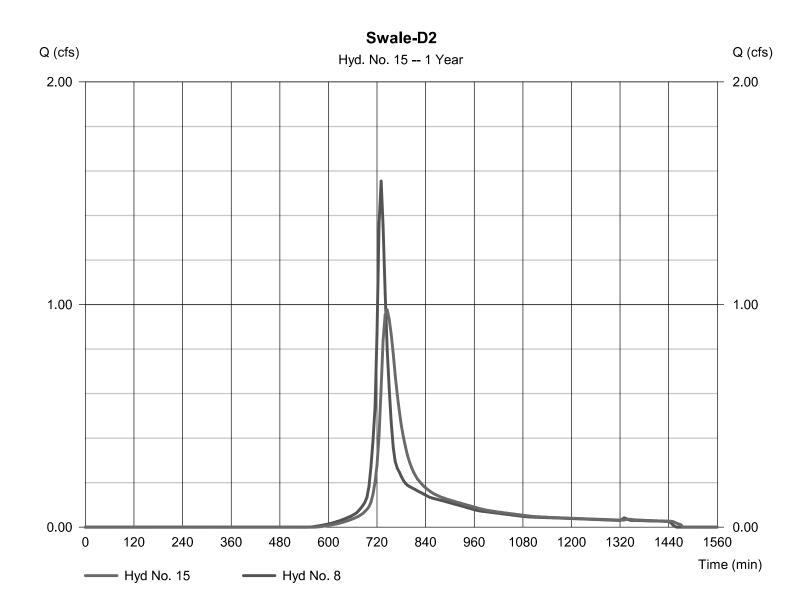
Hyd. No. 14

Swale-D1

Peak discharge Hydrograph type = 1.083 cfs= Reach Storm frequency = 1 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 7.993 cuft= 7 - PDA_Swale-D1 = Trapezoidal Inflow hyd. No. Section type Channel slope = 5.0 % Reach length = 510.0 ftBottom width = 2.0 ftManning's n = 0.500Side slope Max. depth = 1.0 ft= 4.0:1Rating curve x = 0.420Rating curve m = 0.882Ave. velocity = 0.34 ft/sRouting coeff. = 0.1620

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

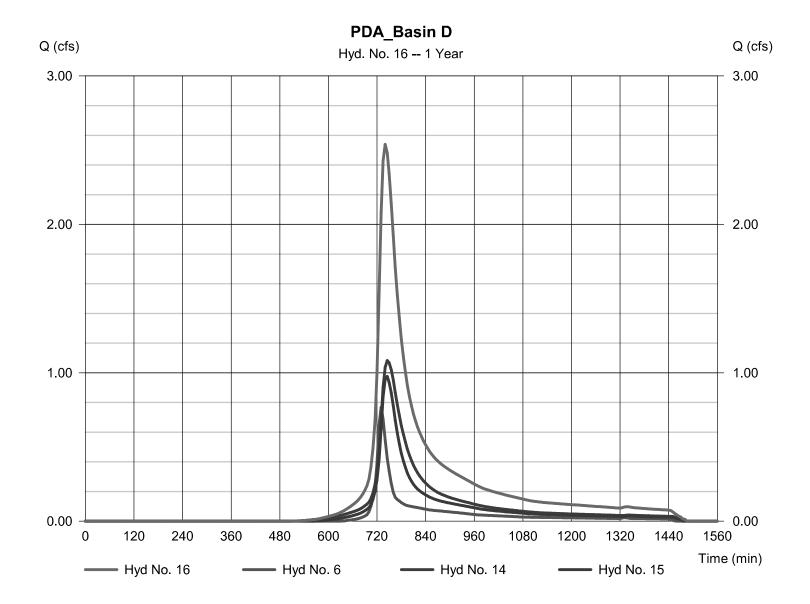

Friday, 12 / 4 / 2015

Hyd. No. 15

Swale-D2

Hydrograph type Peak discharge = 0.976 cfs= Reach Storm frequency = 1 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 6.199 cuft= 8 - PDA_Swale-D2 Inflow hyd. No. Section type = Trapezoidal Reach length Channel slope = 5.0 % $= 365.0 \, \text{ft}$ Bottom width = 2.0 ftManning's n = 0.500Side slope Max. depth = 1.0 ft= 4.0:1Rating curve x = 0.420Rating curve m = 0.882Ave. velocity Routing coeff. = 0.2262= 0.35 ft/s

Modified Att-Kin routing method used.

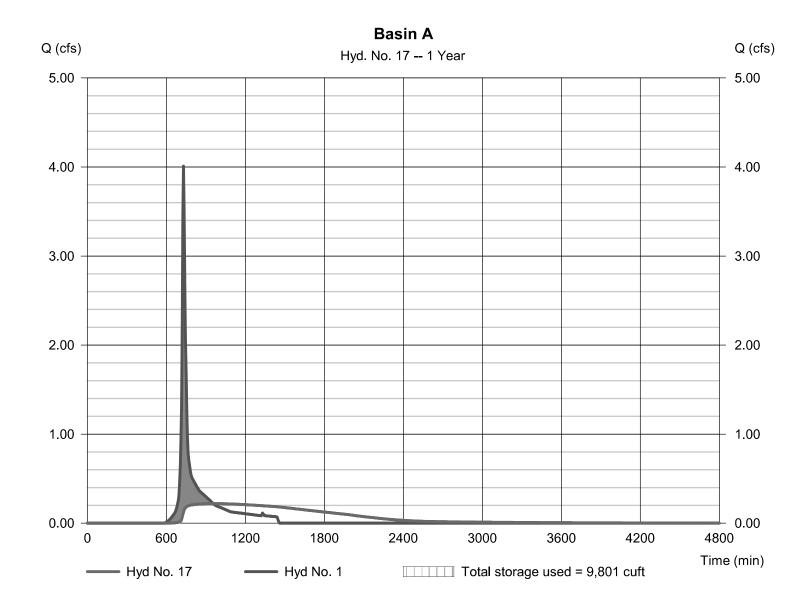

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 16

PDA_Basin D

Hydrograph type = Combine Peak discharge = 2.539 cfsStorm frequency = 1 yrsTime to peak $= 740 \, \text{min}$ Time interval = 5 min Hyd. volume = 17,364 cuftInflow hyds. = 6, 14, 15 Contrib. drain. area = 1.070 ac

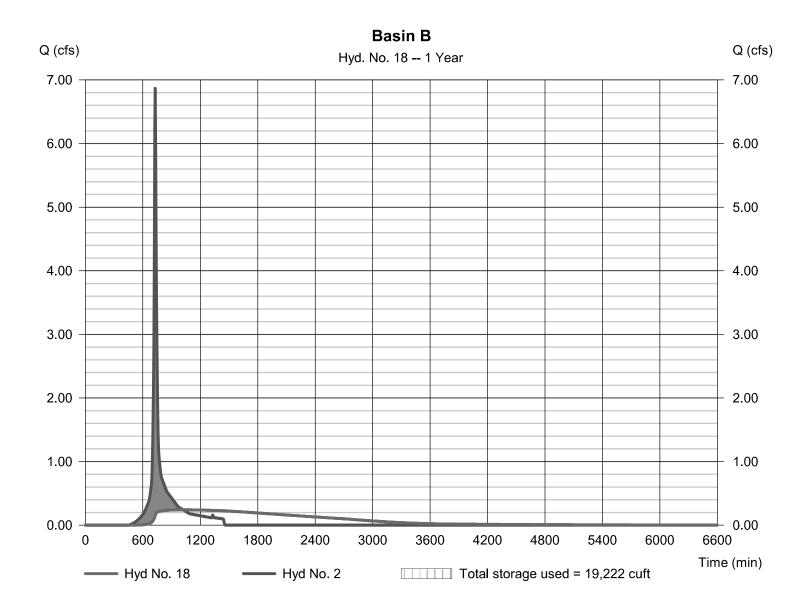

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 17

Basin A

= 0.220 cfsHydrograph type Peak discharge = Reservoir Storm frequency = 1 yrsTime to peak = 955 min Time interval = 5 min Hyd. volume = 16,116 cuft Inflow hyd. No. = 1 - PDA A Max. Elevation = 1386.07 ft= Basin A = 9,801 cuft Reservoir name Max. Storage


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 18

Basin B

Hydrograph type Peak discharge = 0.242 cfs= Reservoir Storm frequency = 1 yrsTime to peak = 1020 min Time interval = 5 min Hyd. volume = 27,255 cuft Inflow hyd. No. = 2 - PDA B Max. Elevation = 1376.26 ft= Basin B = 19,222 cuft Reservoir name Max. Storage

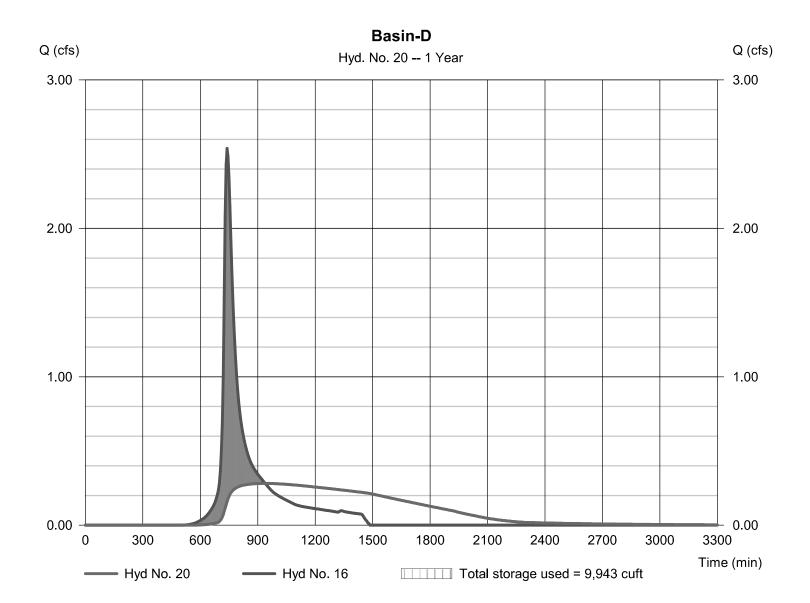
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 19

Basin C

Hydrograph type Peak discharge = 1.808 cfs= Reservoir Storm frequency = 1 yrsTime to peak = 765 min Time interval = 5 min Hyd. volume = 39,581 cuft Inflow hyd. No. = 5 - PDA C Max. Elevation = 1486.28 ft = Basin C Reservoir name Max Storage = 20,348 cuft

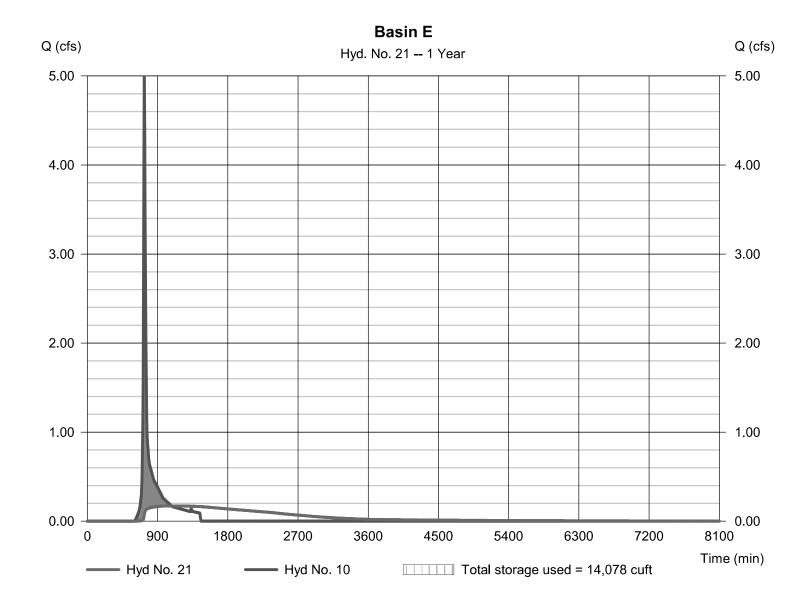

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 20

Basin-D

Hydrograph type Peak discharge = 0.281 cfs= Reservoir Storm frequency = 1 yrsTime to peak = 940 min Time interval = 5 min Hyd. volume = 17,334 cuft= 16 - PDA_Basin D Inflow hyd. No. Max. Elevation = 1496.65 ft = Basin D = 9,943 cuft Reservoir name Max. Storage

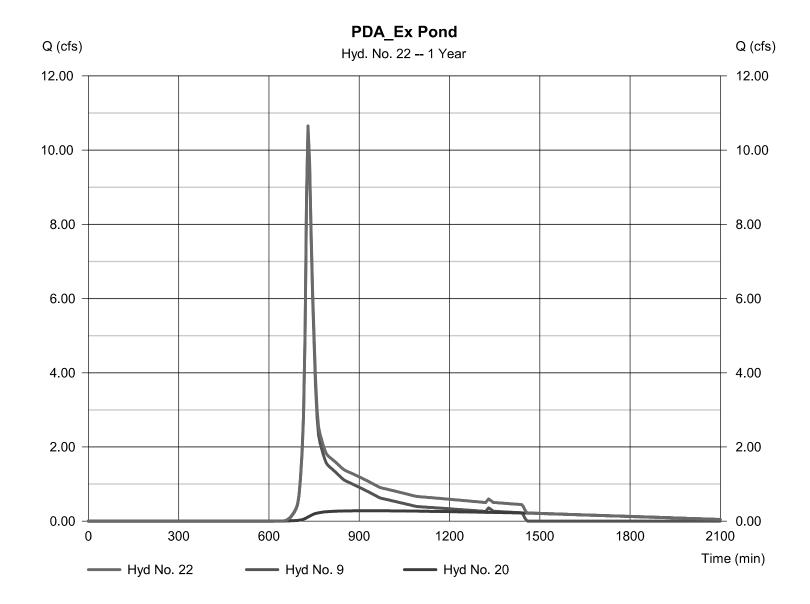

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 21

Basin E

Hydrograph type Peak discharge = 0.172 cfs= Reservoir Storm frequency = 1 yrsTime to peak = 1080 min Time interval = 5 min Hyd. volume = 20,133 cuftInflow hyd. No. = 10 - PDA E Max. Elevation = 1495.71 ft = Basin E Max Storage = 14,078 cuftReservoir name

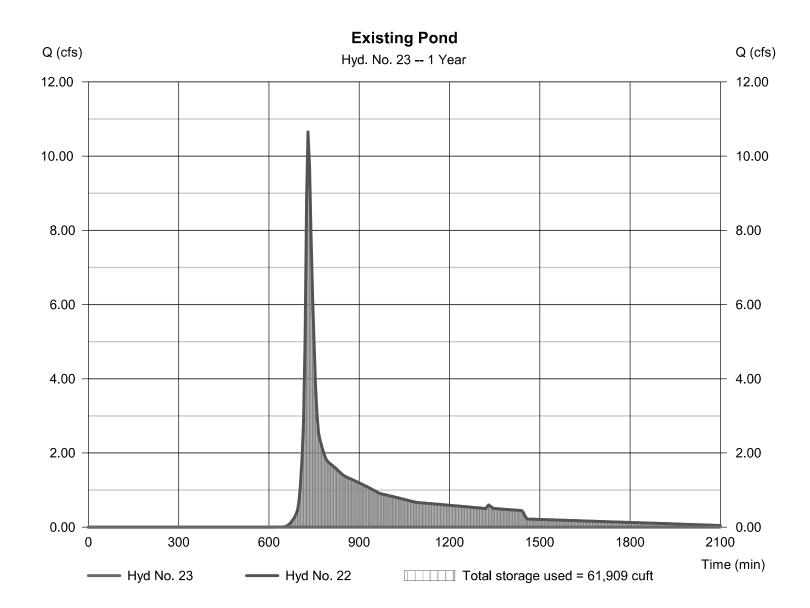

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 22

PDA_Ex Pond

Hydrograph type = Combine Peak discharge = 10.65 cfsStorm frequency = 1 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 61,909 cuftInflow hyds. = 9, 20 Contrib. drain. area = 16.970 ac

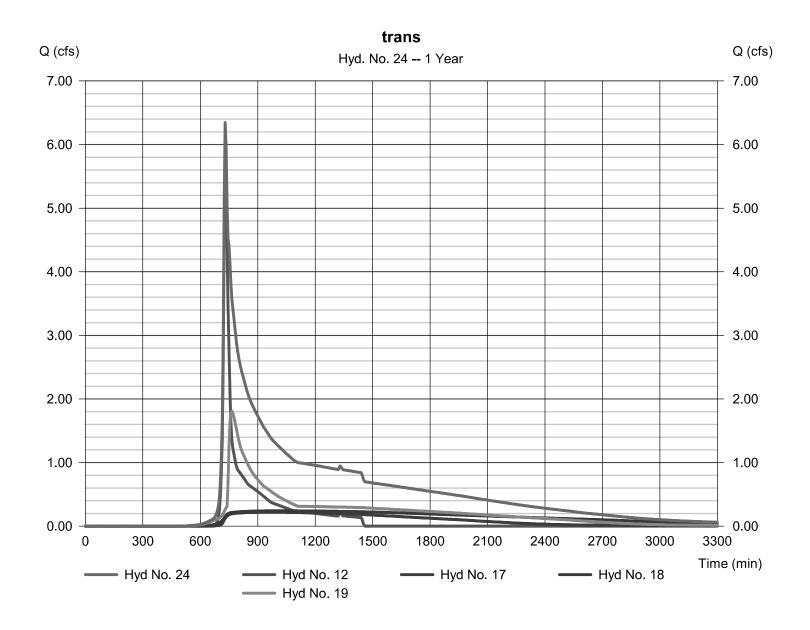

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 23

Existing Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir = 1 yrs Storm frequency Time to peak = n/aTime interval = 5 min Hyd. volume = 0 cuft= 22 - PDA_Ex Pond Inflow hyd. No. Max. Elevation = 1485.69 ft = Ex. Pond Reservoir name Max. Storage = 61,909 cuft

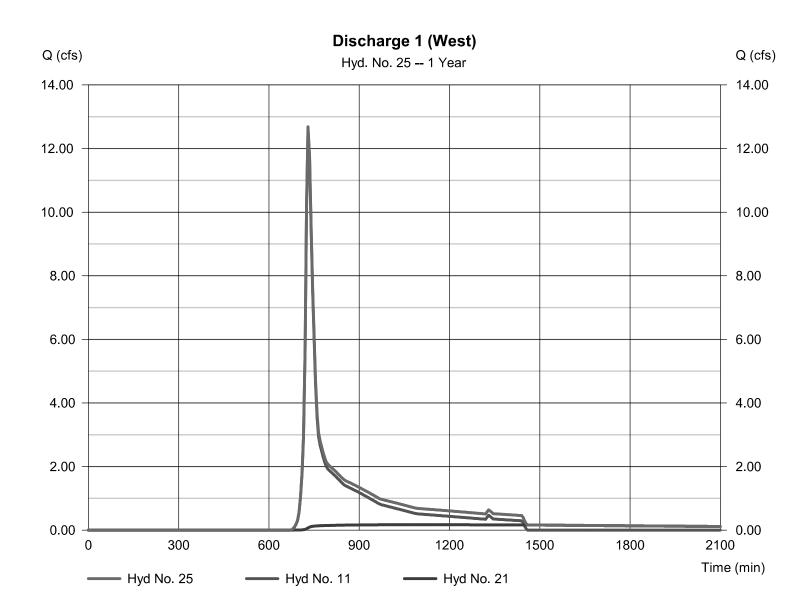

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 24

trans

Hydrograph type = Combine Peak discharge = 6.345 cfsStorm frequency Time to peak = 1 yrs= 730 min Time interval = 5 min Hyd. volume = 108,358 cuft Inflow hyds. = 12, 17, 18, 19 Contrib. drain. area = 10.980 ac

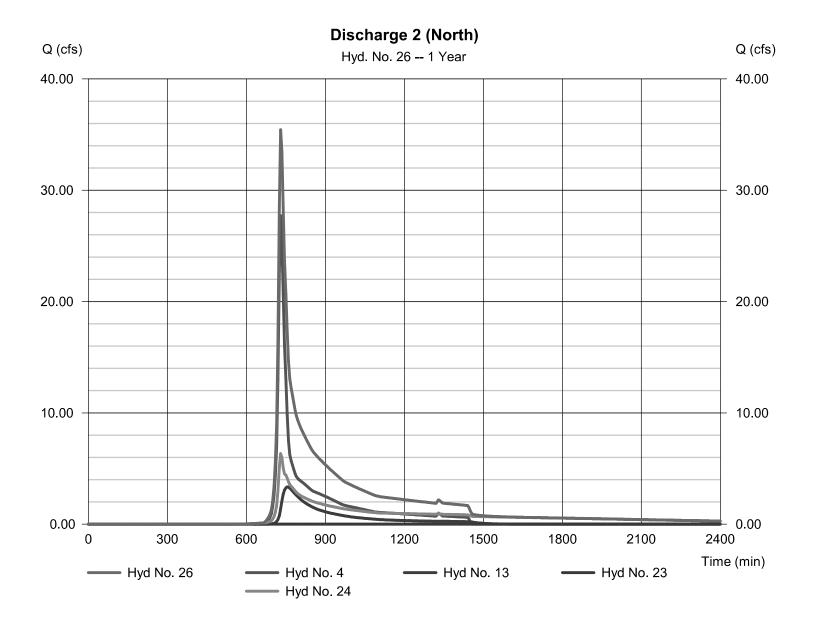

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Friday, 12 / 4 / 2015

Hyd. No. 25

Discharge 1 (West)

Hydrograph type = Combine Peak discharge = 12.68 cfsStorm frequency Time to peak = 1 yrs= 730 min Time interval = 5 min Hyd. volume = 75,295 cuft Inflow hyds. = 11, 21 Contrib. drain. area = 23.840 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 26

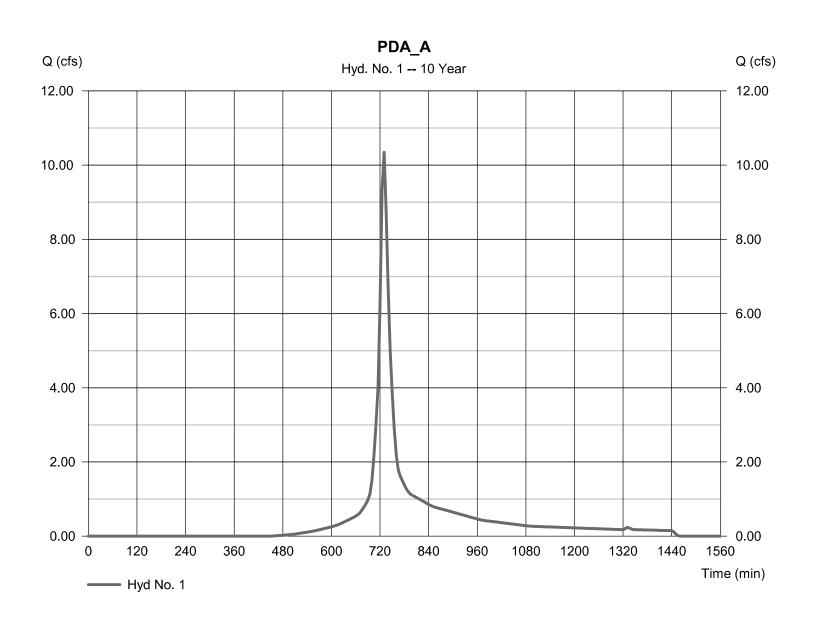
Discharge 2 (North)

Hydrograph type = Combine Peak discharge = 35.44 cfsStorm frequency = 1 yrsTime to peak $= 730 \, \text{min}$ Time interval = 5 min Hyd. volume = 264,904 cuft Inflow hyds. = 4, 13, 23, 24Contrib. drain. area = 48.250 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.35	5	730	41,176				PDA_A
2	SCS Runoff	14.71	5	730	60,106			_	PDA_B
3	SCS Runoff	28.35	5	730	113,178			_	PDA_Swale-A1
4	SCS Runoff	87.79	5	730	349,715			_	PDA_X2
5	SCS Runoff	21.33	5	730	87,132			_	PDA_C
6	SCS Runoff	2.179	5	730	8,654			_	PDA_D
7	SCS Runoff	4.542	5	730	18,350			_	PDA_Swale-D1
8	SCS Runoff	3.790	5	730	15,145			_	PDA_Swale-D2
9	SCS Runoff	32.10	5	730	127,665			_	PDA_X3
10	SCS Runoff	13.26	5	730	52,722			_	PDA_E
11	SCS Runoff	41.67	5	730	166,349			_	PDA_X1
12	SCS Runoff	19.19	5	730	76,615			_	PDA_X4
13	Reach	12.92	5	750	113,156	3		_	Swale-A1
14	Reach	2.359	5	745	18,333	7		_	Swale-D1
15	Reach	2.298	5	745	15,130	8		_	Swale-D2
16	Combine	5.974	5	740	42,116	6, 14, 15		_	PDA_Basin D
17	Reservoir	0.372	5	1015	41,128	1	1387.74	28,524	Basin A
18	Reservoir	0.372	5	1075	60,027	2	1377.74	45,607	Basin B
19	Reservoir	12.20	5	740	87,088	5	1487.35	31,806	Basin C
20	Reservoir	1.490	5	820	42,086	16	1498.23	22,491	Basin-D
21	Reservoir	0.304	5	1180	52,615	10	1496.89	40,527	Basin E
22	Combine	32.34	5	730	169,751	9, 20,		_	PDA_Ex Pond
23	Reservoir	0.000	5	n/a	0	22	1486.89	169,751	Existing Pond
24	Combine	29.77	5	730	264,858	12, 17, 18,			trans
25	Combine	41.86	5	730	218,964	19, 11, 21,		_	Discharge 1 (West)
26	Combine	125.01	5	730	727,729	4, 13, 23, 24,			Discharge 2 (North)
GanEden-Prop.gpw					Return Period: 10 Year			Friday, 12 / 4 / 2015	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

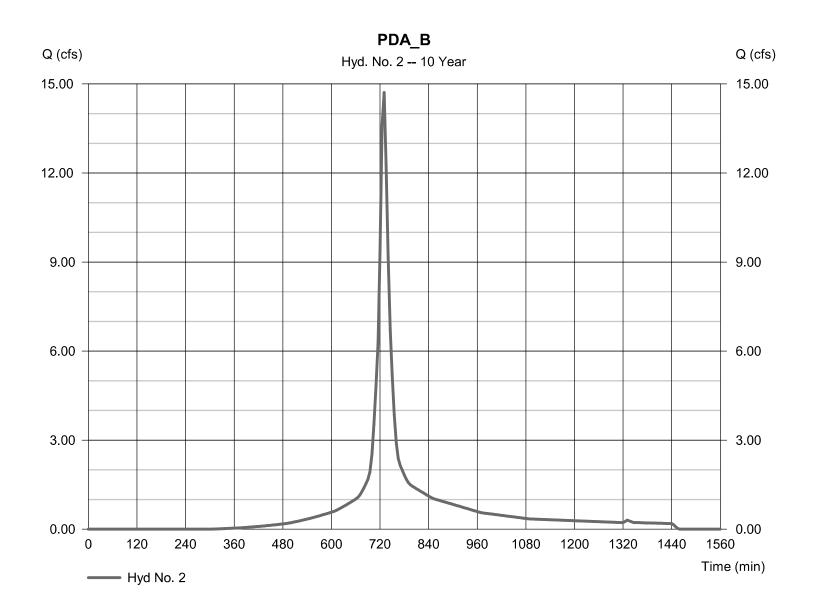

Friday, 12 / 4 / 2015

Hyd. No. 1

PDA_A

Hydrograph type = SCS Runoff Peak discharge = 10.35 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 41,176 cuft= 4.590 acCurve number Drainage area = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 4.590$


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 2

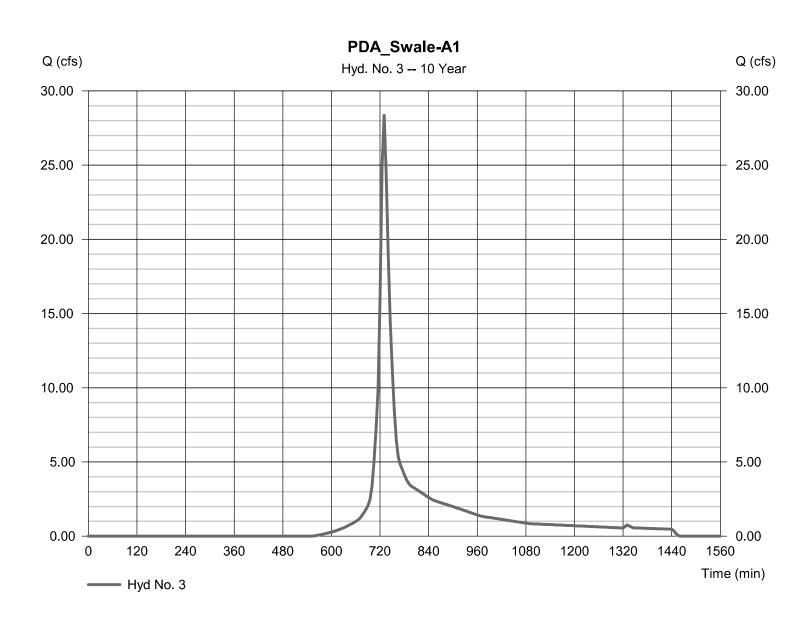
PDA_B

Hydrograph type = SCS Runoff Peak discharge = 14.71 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 60,106 cuftDrainage area = 5.360 acCurve number = 89 Basin Slope Hydraulic length = 0 ft= 0.0 % Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 3


PDA Swale-A1

Hydrograph type = SCS Runoff Peak discharge = 28.35 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 113.178 cuft Drainage area = 16.220 acCurve number = 75*

Basin Slope = 0.0 % Hydraulic length = 0 ft

Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 16.220$

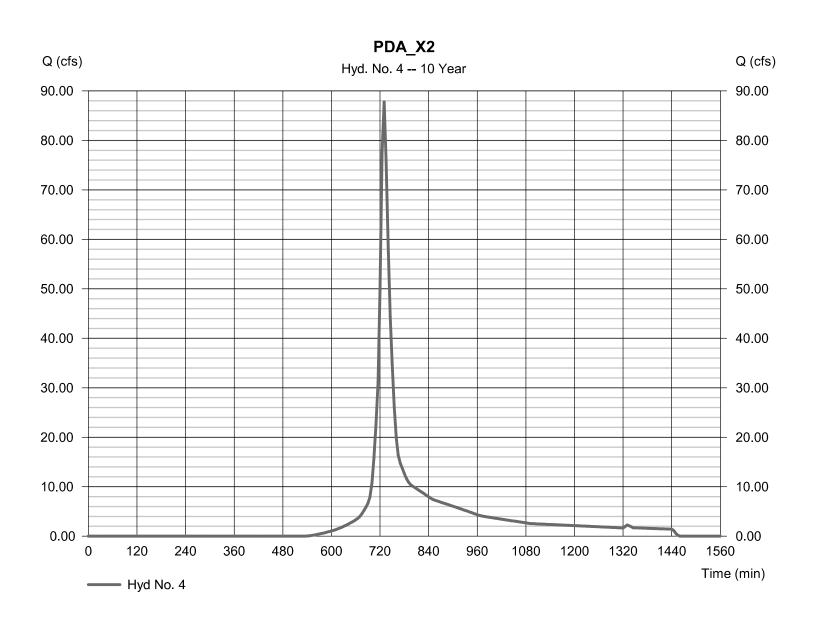
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

= 24 hrs

Friday, 12 / 4 / 2015

= 484

Hyd. No. 4


Storm duration

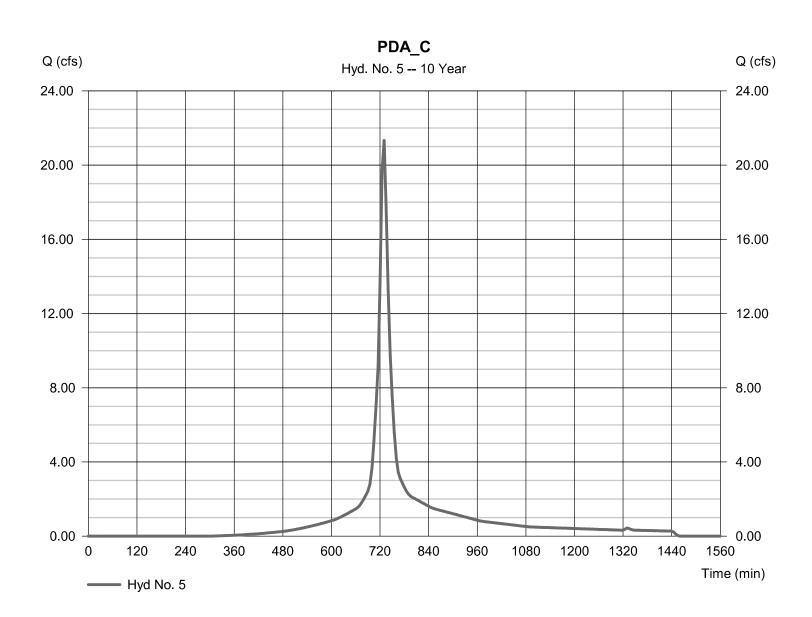
PDA_X2

Hydrograph type = SCS Runoff Peak discharge = 87.79 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 349.715 cuft = 48.250 ac Drainage area Curve number = 76* = 0 ftBasin Slope = 0.0 % Hydraulic length Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III

Shape factor

^{*} Composite (Area/CN) = [(20.000 x 75)] / 48.250

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 5

PDA_C

Hydrograph type = SCS Runoff Peak discharge = 21.33 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 87.132 cuft = 7.770 acCurve number Drainage area = 89* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 7.770$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 6

PDA D

Hydrograph type = SCS Runoff Peak discharge = 2.179 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 8.654 cuft Curve number = 79* Drainage area = 1.070 ac= 0 ftBasin Slope = 0.0 % Hydraulic length Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

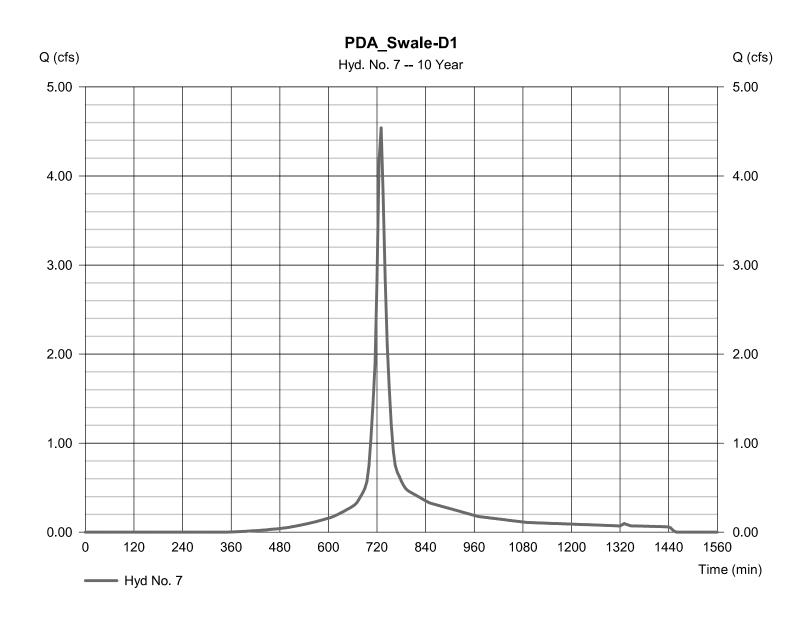
^{*} Composite (Area/CN) = [(20.000 x 75)] / 1.070

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 7

PDA_Swale-D1


= SCS Runoff Peak discharge = 4.542 cfsHydrograph type Storm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 18.350 cuft Curve number Drainage area = 1.740 ac= 87* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$

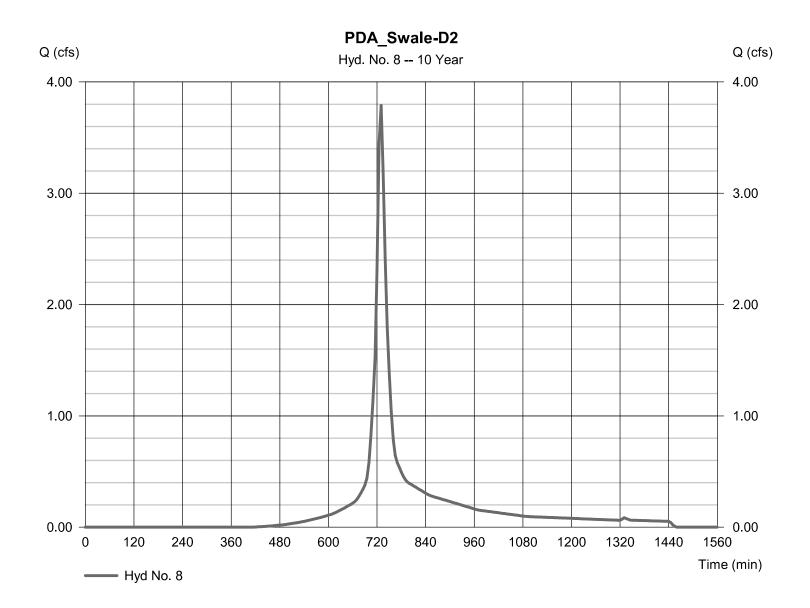
Tc method = User Time of conc. (Tc) = 10.00 mir

Total precip. = 4.50 in Distribution = Type III

Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 1.740$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 8

PDA_Swale-D2

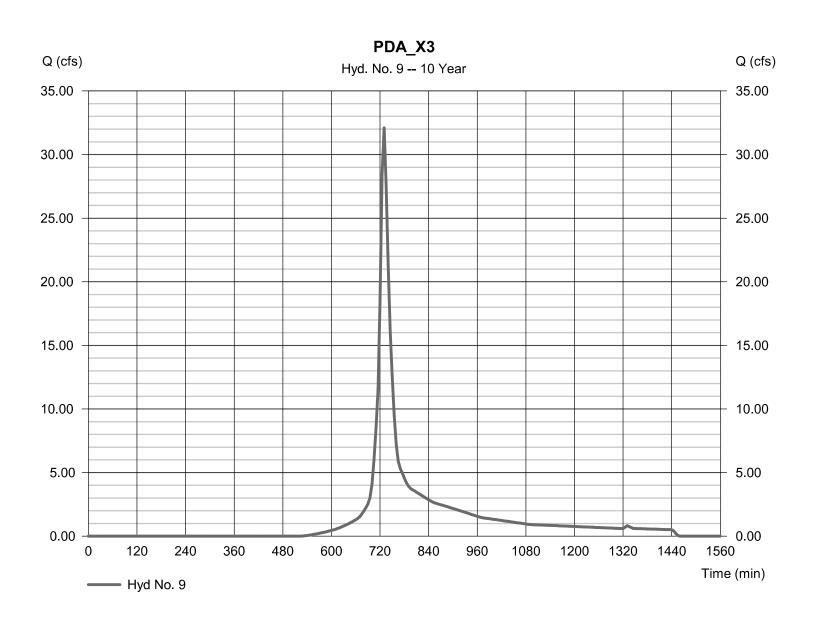
Hydrograph type = SCS Runoff Peak discharge = 3.790 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 15,145 cuft Drainage area = 1.580 acCurve number = 84

Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 4.50 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 9


PDA X3

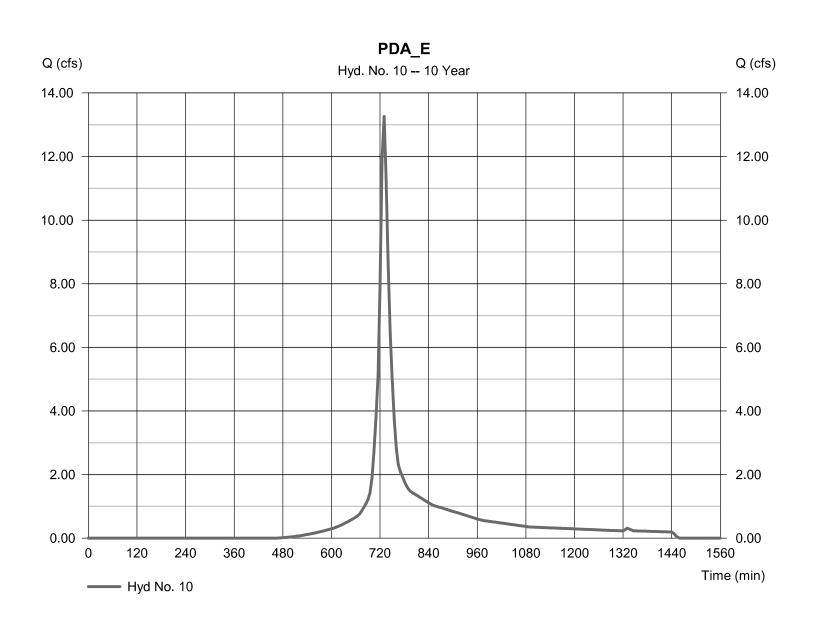
Hydrograph type = SCS Runoff Peak discharge = 32.10 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 127,665 cuft = 77* Drainage area = 16.970 acCurve number

= 0 ftBasin Slope = 0.0 % Hydraulic length

Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 16.970

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 10

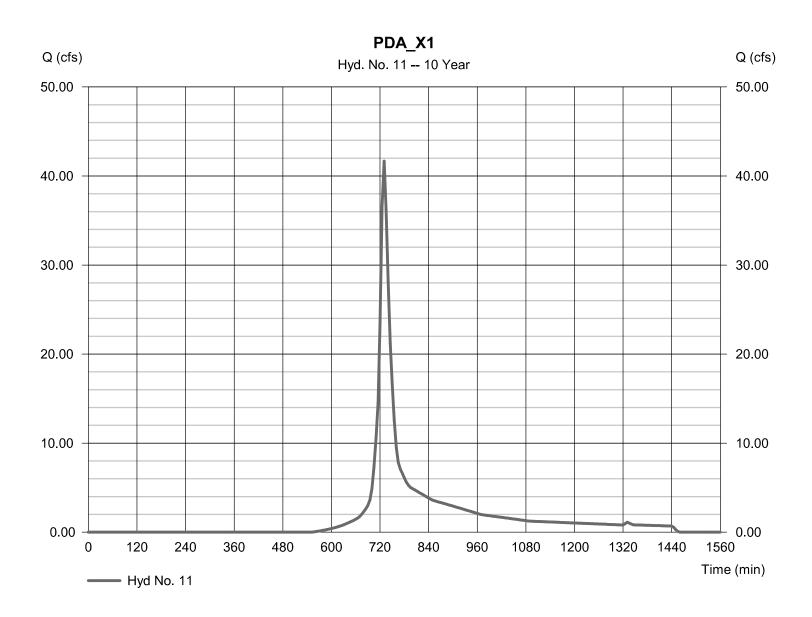
PDA_E

Hydrograph type = SCS Runoff Peak discharge = 13.26 cfsStorm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 52.722 cuft Drainage area Curve number = 6.080 ac= 81* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 6.080$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

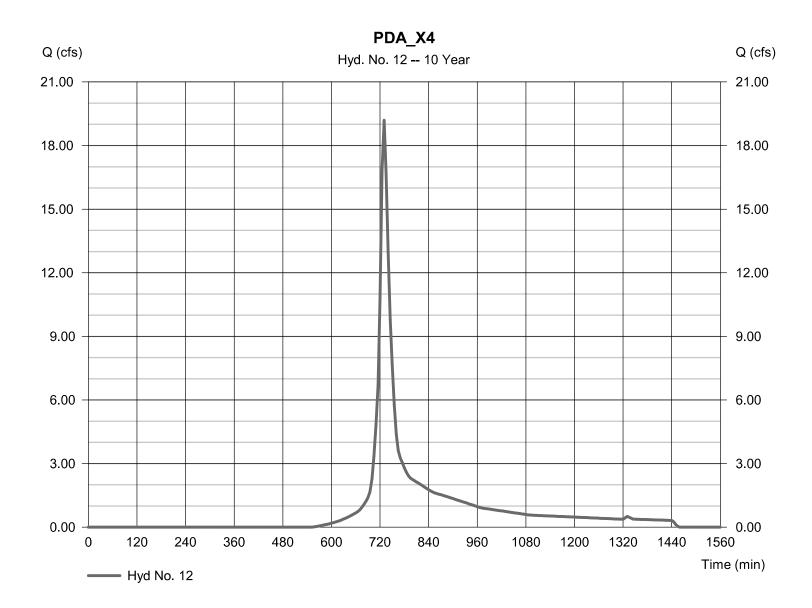

Hyd. No. 11

PDA_X1

= 41.67 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 10 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 166.349 cuft = 23.840 acCurve number = 75* Drainage area

Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 4.50 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 23.840


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

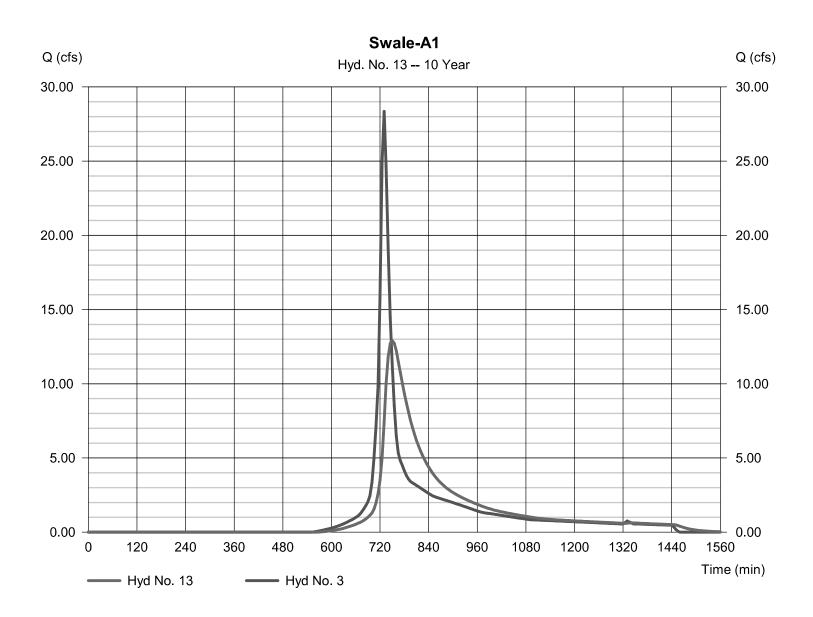
Friday, 12 / 4 / 2015

Hyd. No. 12

PDA_X4

Hydrograph type = SCS Runoff Peak discharge = 19.19 cfsStorm frequency = 10 yrsTime to peak = 730 min = 76,615 cuft Time interval = 5 min Hyd. volume Drainage area = 10.980 acCurve number = 75 Basin Slope Hydraulic length = 0 ft= 0.0 % Tc method Time of conc. (Tc) = 13.60 min = User Total precip. = 4.50 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

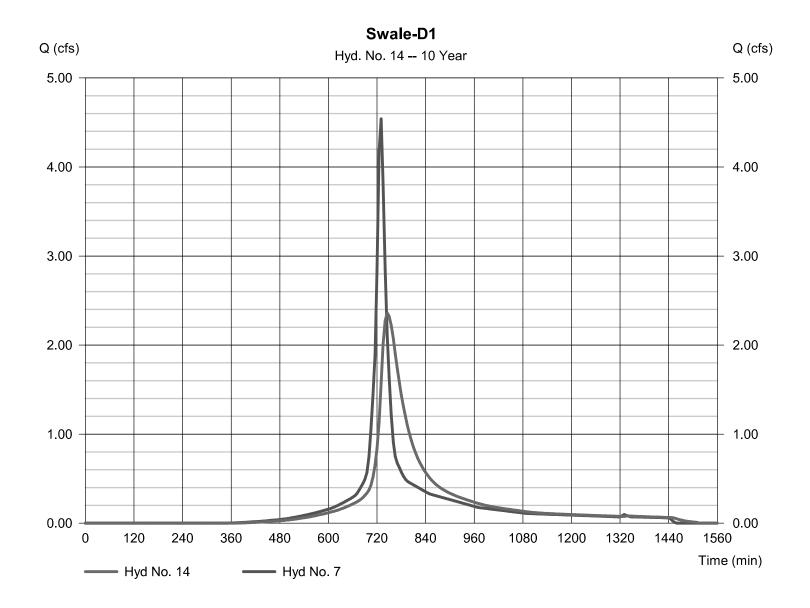
Hyd. No. 13

Swale-A1

Peak discharge Hydrograph type = 12.92 cfs= Reach Storm frequency = 10 yrsTime to peak = 750 min Time interval = 5 min Hyd. volume = 113,156 cuft = 3 - PDA_Swale-A1 Inflow hyd. No. Section type = Trapezoidal Reach length Channel slope = 5.0 % = 1750.0 ftBottom width = 4.0 ftManning's n = 0.500Side slope Max. depth = 2.0 ft= 4.0:1Rating curve x = 0.264Rating curve m = 1.224Ave. velocity Routing coeff. = 0.1226= 0.62 ft/s

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

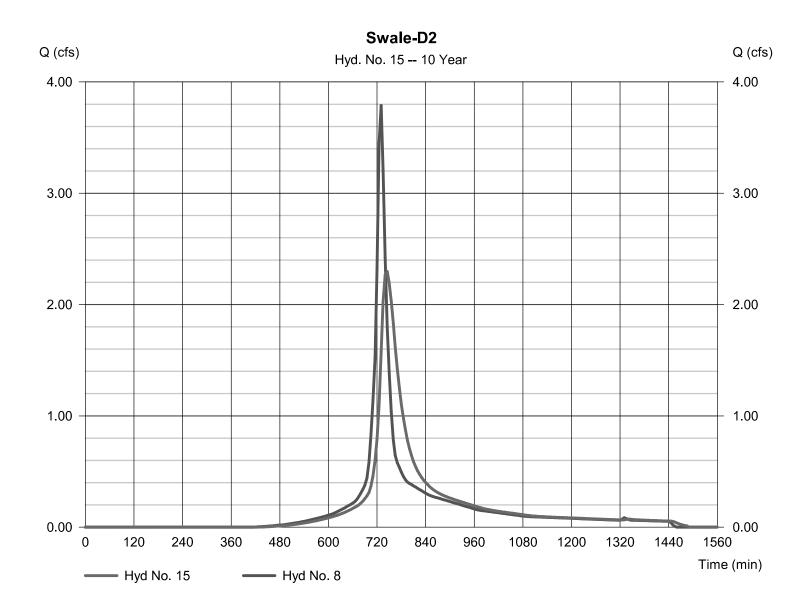
Hyd. No. 14

Swale-D1

Peak discharge Hydrograph type = 2.359 cfs= Reach Storm frequency = 10 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 18.333 cuft = Trapezoidal Inflow hyd. No. = 7 - PDA_Swale-D1 Section type Channel slope = 5.0 % Reach length = 510.0 ftBottom width = 2.0 ftManning's n = 0.500Side slope Max. depth = 1.0 ft= 4.0:1Rating curve x Rating curve m = 0.882= 0.420Ave. velocity Routing coeff. = 0.30 ft/s= 0.1465

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

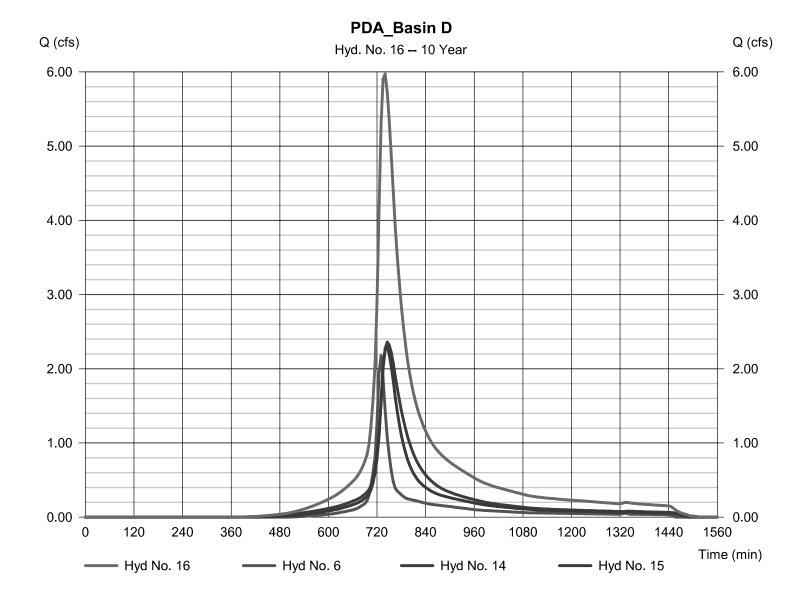
Hyd. No. 15

Swale-D2

Peak discharge Hydrograph type = 2.298 cfs= Reach Storm frequency = 10 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 15,130 cuftInflow hyd. No. = 8 - PDA_Swale-D2 Section type = Trapezoidal Channel slope = 5.0 % Reach length $= 365.0 \, \text{ft}$ Bottom width = 2.0 ftManning's n = 0.500Side slope Max. depth = 1.0 ft= 4.0:1Rating curve x = 0.420Rating curve m = 0.882Ave. velocity = 0.31 ft/sRouting coeff. = 0.2033

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

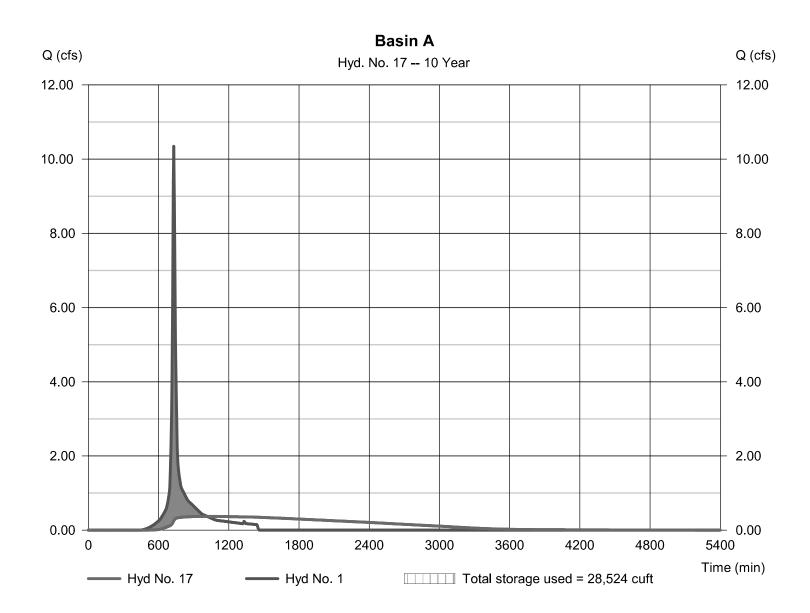

Friday, 12 / 4 / 2015

Hyd. No. 16

PDA_Basin D

Hydrograph type = Combine
Storm frequency = 10 yrs
Time interval = 5 min
Inflow hyds. = 6, 14, 15

Peak discharge = 5.974 cfs
Time to peak = 740 min
Hyd. volume = 42,116 cuft
Contrib. drain. area = 1.070 ac

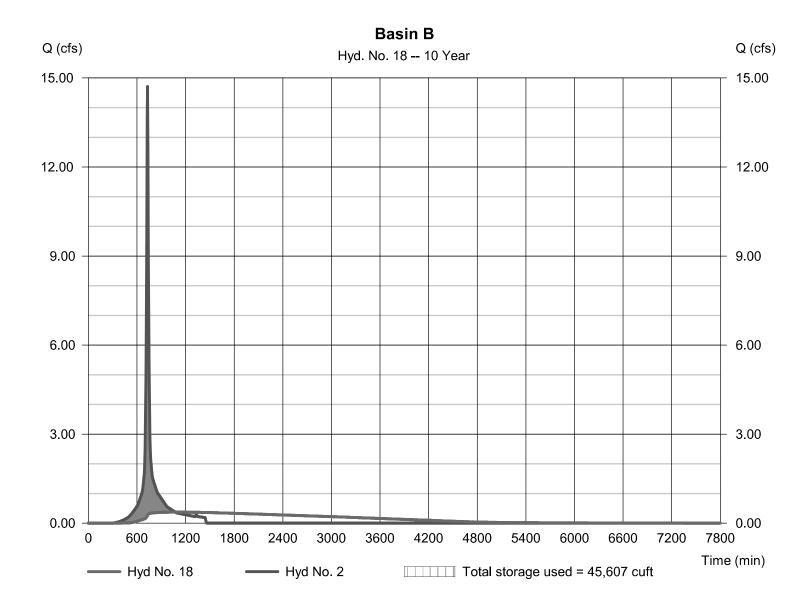

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 17

Basin A

Hydrograph type Peak discharge = 0.372 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 1015 min Time interval = 5 min Hyd. volume = 41,128 cuft Inflow hyd. No. = 1 - PDA A Max. Elevation = 1387.74 ft= Basin A Max Storage = 28,524 cuft Reservoir name

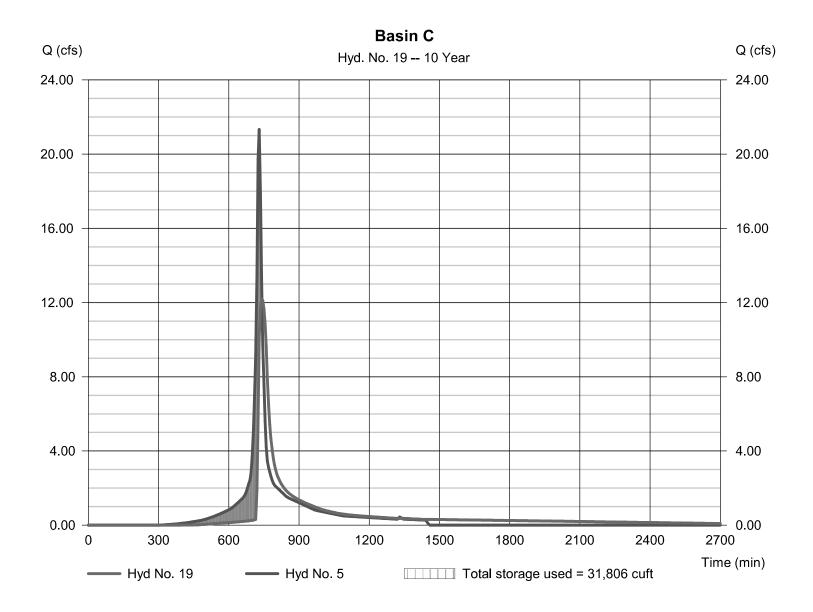

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 18

Basin B

Hydrograph type Peak discharge = 0.372 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 1075 min Time interval = 5 min Hyd. volume = 60,027 cuftInflow hyd. No. = 2 - PDA B Max. Elevation = 1377.74 ft = Basin B Reservoir name Max Storage = 45,607 cuft

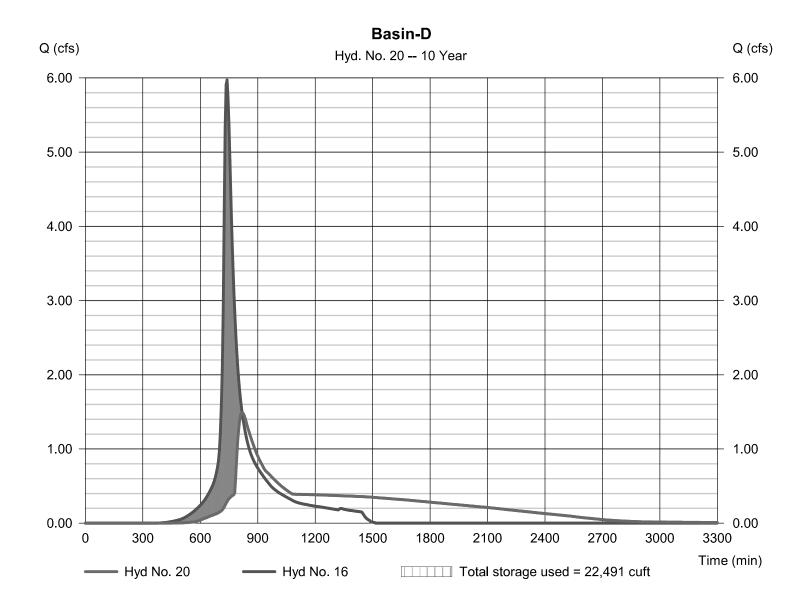

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 19

Basin C

Hydrograph type Peak discharge = 12.20 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 740 min Time interval = 5 min Hyd. volume = 87,088 cuft Inflow hyd. No. = 5 - PDA C Max. Elevation = 1487.35 ft = Basin C = 31,806 cuft Reservoir name Max. Storage

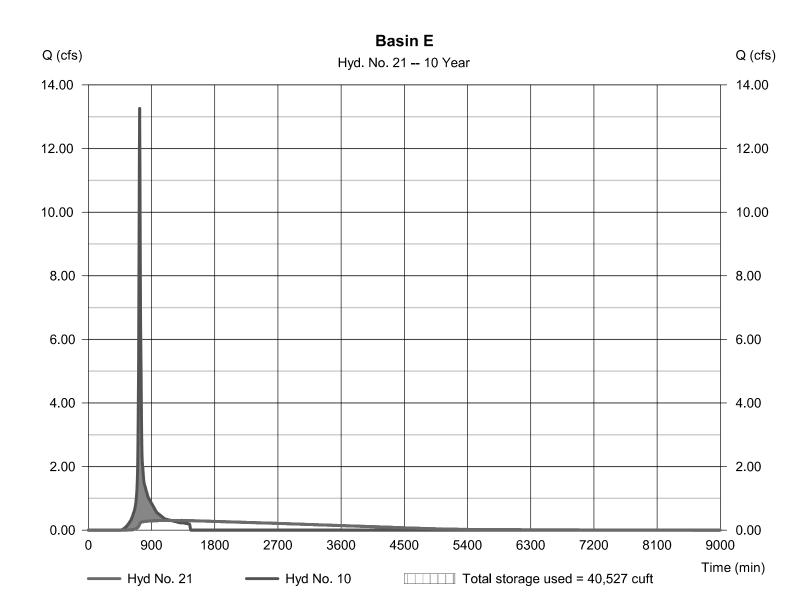

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 20

Basin-D

Hydrograph type Peak discharge = 1.490 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 820 min Time interval = 5 min Hyd. volume = 42,086 cuft= 16 - PDA_Basin D Inflow hyd. No. Max. Elevation = 1498.23 ft = Basin D = 22,491 cuftReservoir name Max. Storage

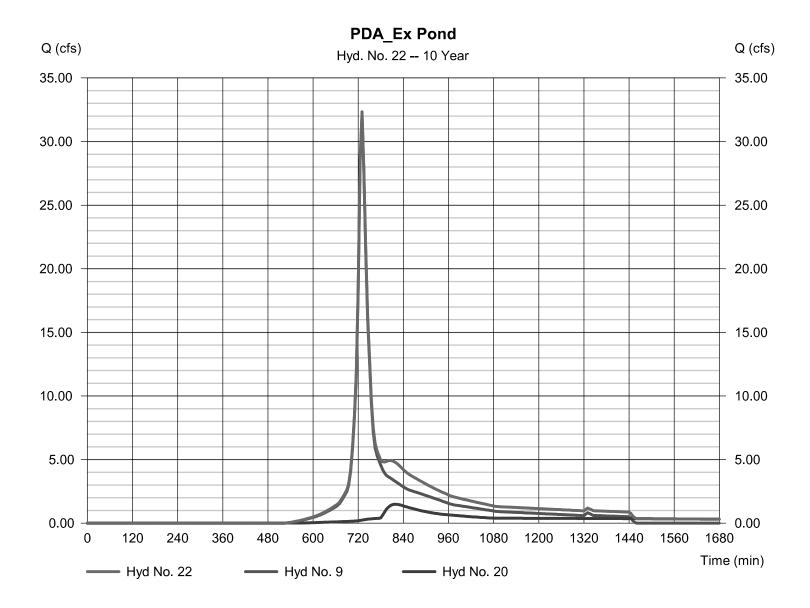

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 21

Basin E

Hydrograph type Peak discharge = 0.304 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 1180 min Time interval = 5 min Hyd. volume = 52,615 cuftInflow hyd. No. = 10 - PDA E Max. Elevation = 1496.89 ft Reservoir name = Basin E Max Storage = 40,527 cuft

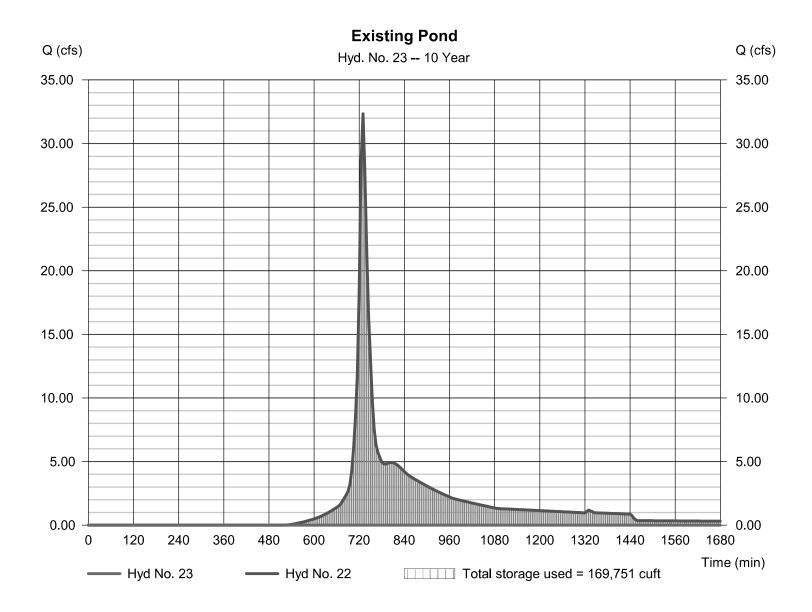

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 22

PDA Ex Pond

Hydrograph type = Combine Peak discharge = 32.34 cfsStorm frequency Time to peak = 10 yrs= 730 min Time interval = 5 min Hyd. volume = 169,751 cuft Inflow hyds. = 9, 20Contrib. drain. area = 16.970 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

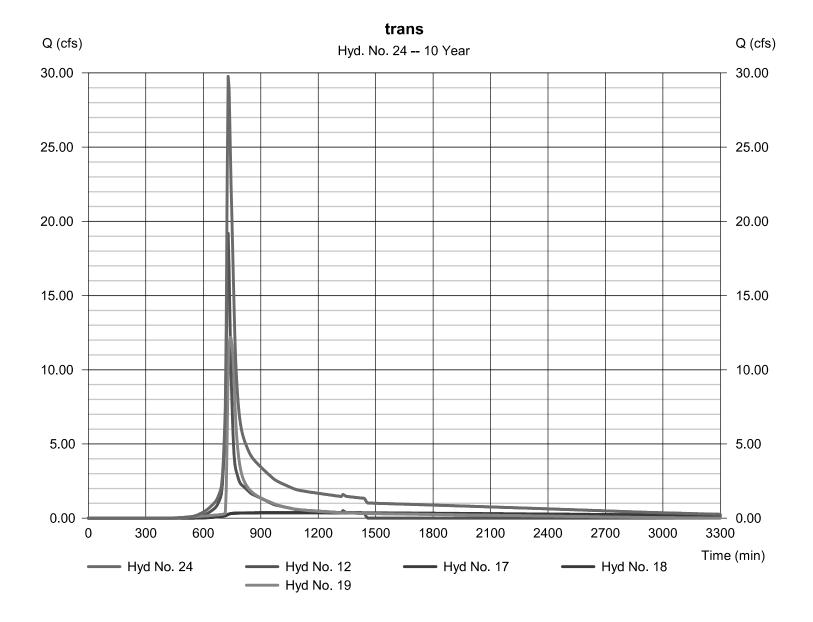
Friday, 12 / 4 / 2015

Hyd. No. 23

Existing Pond

Hydrograph type Peak discharge = Reservoir = 0.000 cfsStorm frequency = 10 yrsTime to peak = n/aTime interval = 5 min Hyd. volume = 0 cuft= 22 - PDA_Ex Pond Inflow hyd. No. Max. Elevation = 1486.89 ft = Ex. Pond Reservoir name Max. Storage = 169,751 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

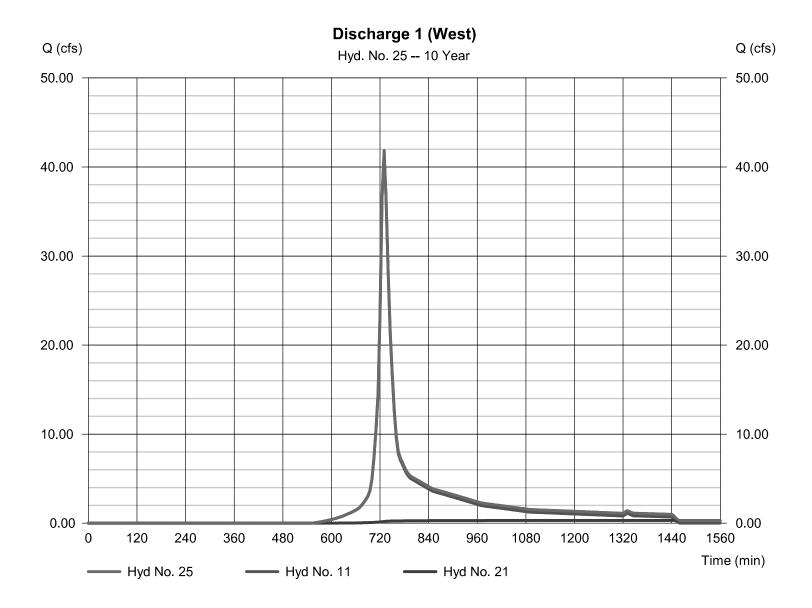

Friday, 12 / 4 / 2015

Hyd. No. 24

trans

Hydrograph type = Combine
Storm frequency = 10 yrs
Time interval = 5 min
Inflow hyds. = 12, 17, 18, 19

Peak discharge = 29.77 cfs
Time to peak = 730 min
Hyd. volume = 264,858 cuft
Contrib. drain. area = 10.980 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

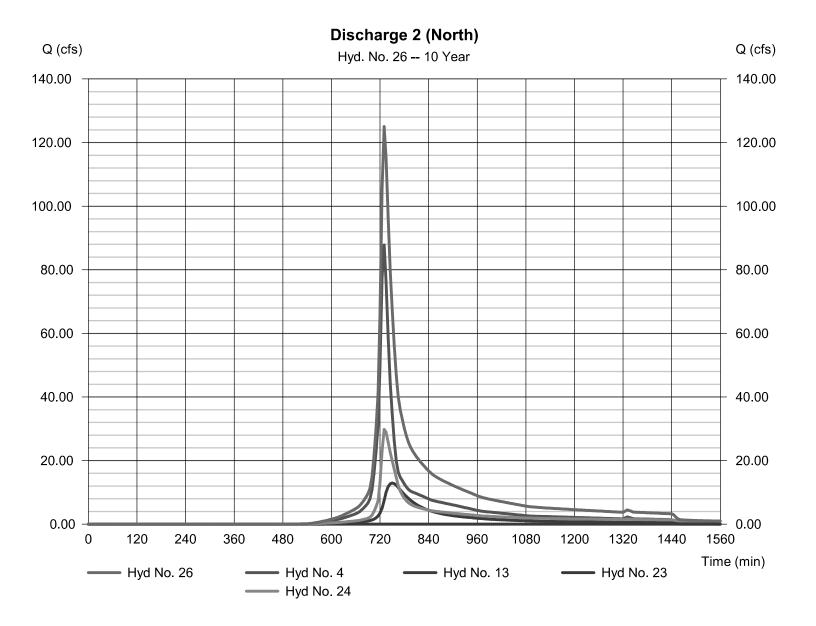
Friday, 12 / 4 / 2015

Hyd. No. 25

Discharge 1 (West)

Hydrograph type = Combine Peak discharge = 41.86 cfsStorm frequency = 10 yrsTime to peak $= 730 \, \text{min}$ Time interval = 5 min Hyd. volume = 218,964 cuft Inflow hyds. = 11, 21Contrib. drain. area = 23.840 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

Hyd. No. 26

Discharge 2 (North)

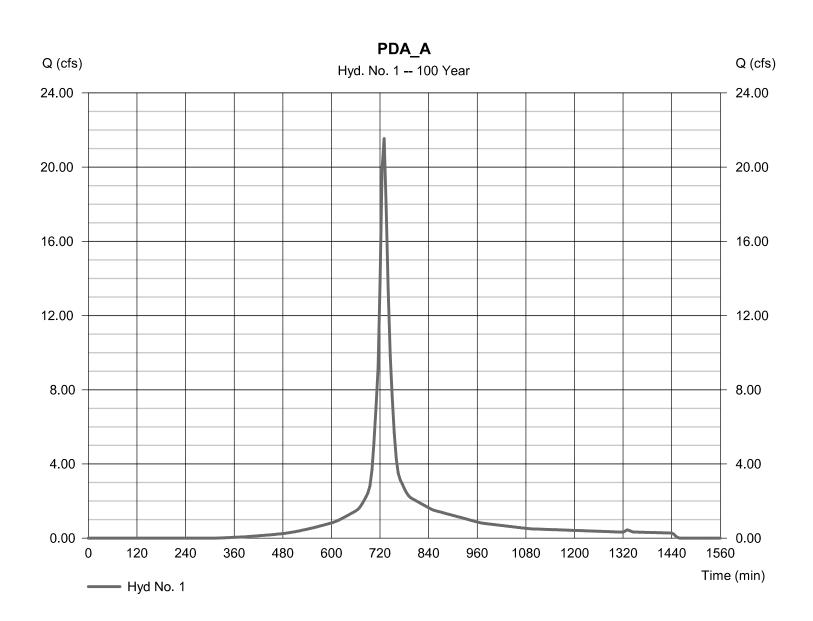
Hydrograph type = Combine
Storm frequency = 10 yrs
Time interval = 5 min
Inflow hyds. = 4, 13, 23, 24

Peak discharge = 125.01 cfs
Time to peak = 730 min
Hyd. volume = 727,729 cuft
Contrib. drain. area = 48.250 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	1 -	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	21.54	5	730	87,829				PDA_A
2	SCS Runoff	27.71	5	730	117,501				PDA_B
3	SCS Runoff	66.57	5	730	265,873				PDA_Swale-A1
4	SCS Runoff	202.32	5	730	809,663				PDA_X2
5	SCS Runoff	40.18	5	730	170,332				PDA_C
6	SCS Runoff	4.762	5	730	19,210				PDA_D
7	SCS Runoff	8.785	5	730	36,751				PDA_Swale-D1
8	SCS Runoff	7.652	5	730	31,485				PDA_Swale-D2
9	SCS Runoff	72.64	5	730	291,384				PDA_X3
10	SCS Runoff	28.05	5	730	113,940				PDA_E
11	SCS Runoff	97.84	5	730	390,778				PDA_X1
12	SCS Runoff	45.06	5	730	179,981				PDA_X4
13	Reach	33.65	5	745	265,854	3			Swale-A1
14	Reach	4.434	5	745	36,732	7			Swale-D1
15	Reach	4.515	5	745	31,470	8			Swale-D2
16	Combine	11.84	5	735	87,412	6, 14, 15			PDA_Basin D
17	Reservoir	5.139	5	755	87,781	1	1389.11	46,510	Basin A
18	Reservoir	3.873	5	770	117,421	2	1378.99	70,924	Basin B
19	Reservoir	17.68	5	745	170,289	5	1489.18	55,119	Basin C
20	Reservoir	8.657	5	760	87,382	16	1498.89	28,765	Basin-D
21	Reservoir	1.052	5	975	113,833	10	1498.65	86,959	Basin E
22	Combine	73.02	5	730	378,766	9, 20,			PDA_Ex Pond
23	Reservoir	0.329	5	1745	18,798	22	1489.02	361,404	Existing Pond
24	Combine	61.62	5	730	555,472	12, 17, 18,			trans
25	Combine	98.15	5	730	504,611	19, 11, 21,			Discharge 1 (West)
26	Combine	285.75	5	730	1,649,788	4, 13, 23, 24,			Discharge 2 (North)
GanEden-Prop.gpw					Return Period: 100 Year			Friday, 12 / 4 / 2015	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

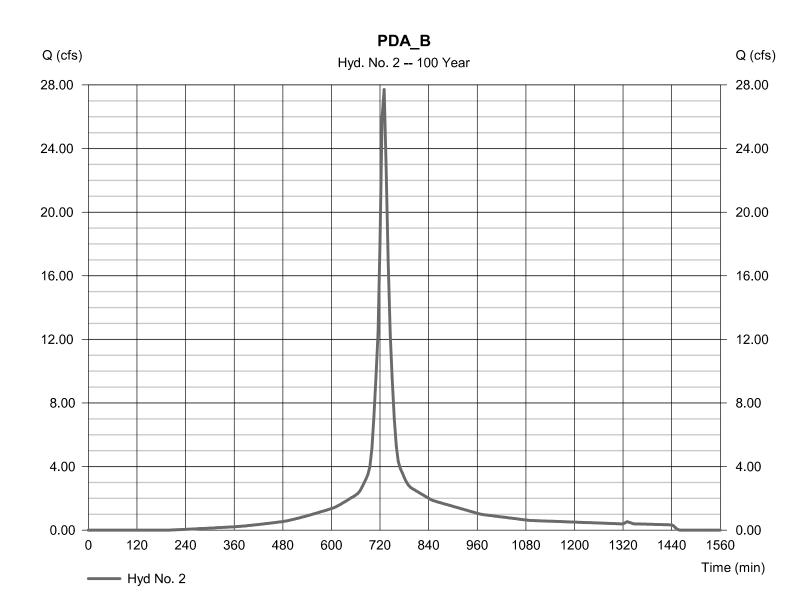

Friday, 12 / 4 / 2015

Hyd. No. 1

PDA_A

Hydrograph type = SCS Runoff Peak discharge = 21.54 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 87.829 cuft Drainage area = 82* = 4.590 acCurve number Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 4.590$


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 2

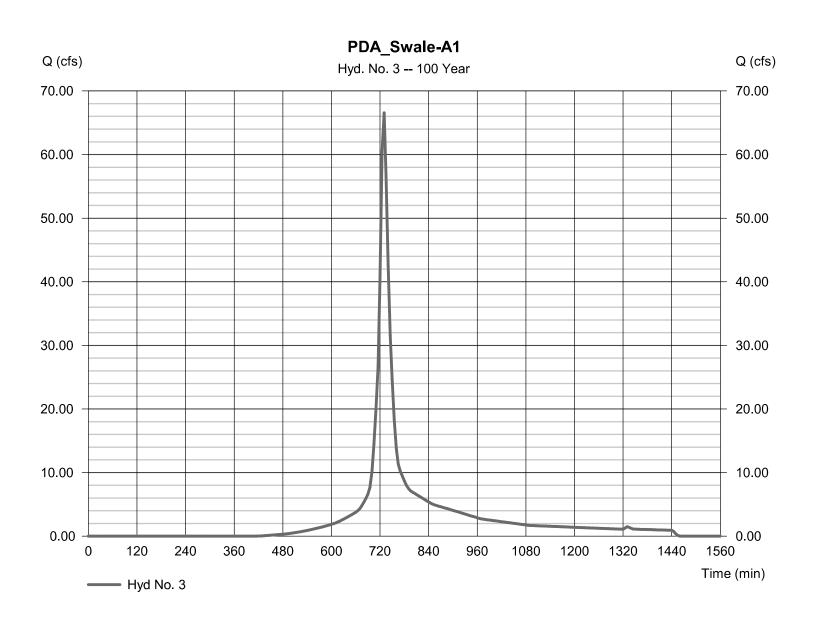
PDA B

Hydrograph type = SCS Runoff Peak discharge = 27.71 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 117,501 cuft Drainage area = 5.360 acCurve number = 89 Hydraulic length = 0 ftBasin Slope = 0.0 % Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 3


PDA_Swale-A1

Hydrograph type= SCS RunoffPeak discharge= 66.57 cfsStorm frequency= 100 yrsTime to peak= 730 minTime interval= 5 minHyd. volume= 265,873 cuftDrainage area= 16.220 acCurve number= 75*

Drainage area = 16.220 ac Curve number = 75^* Basin Slope = 0.0% Hydraulic length = 0.0%

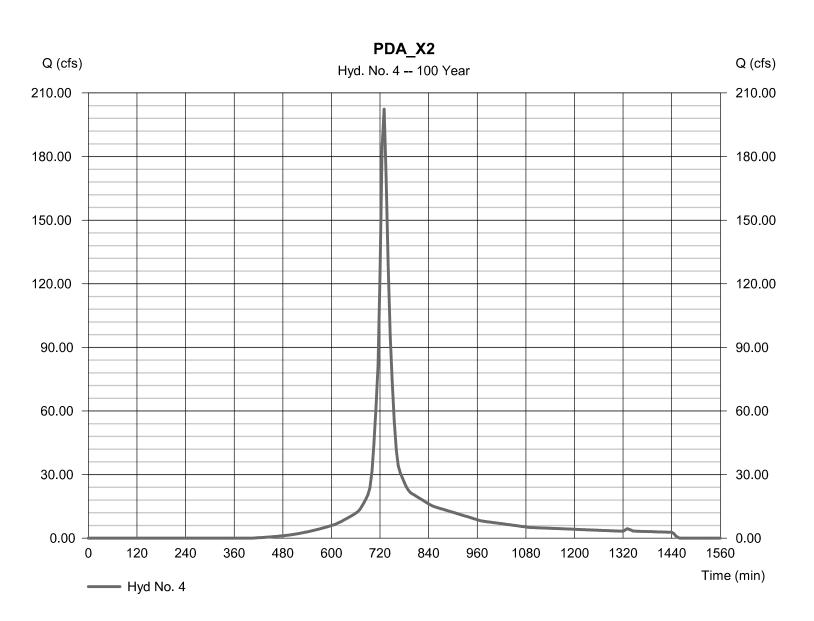
Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 7.75 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.400 x 95) + (3.000 x 75)] / 16.220

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 4


PDA X2

Hydrograph type = SCS Runoff Peak discharge = 202.32 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 809.663 cuft = 48.250 ac Drainage area Curve number = 76*

= 0 ftBasin Slope = 0.0 % Hydraulic length Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User

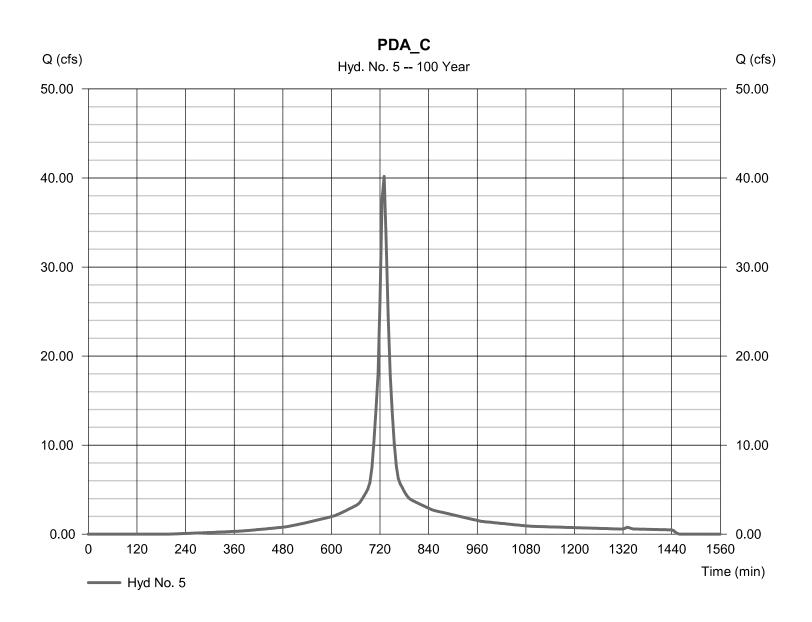
Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 48.250

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 5


PDA C

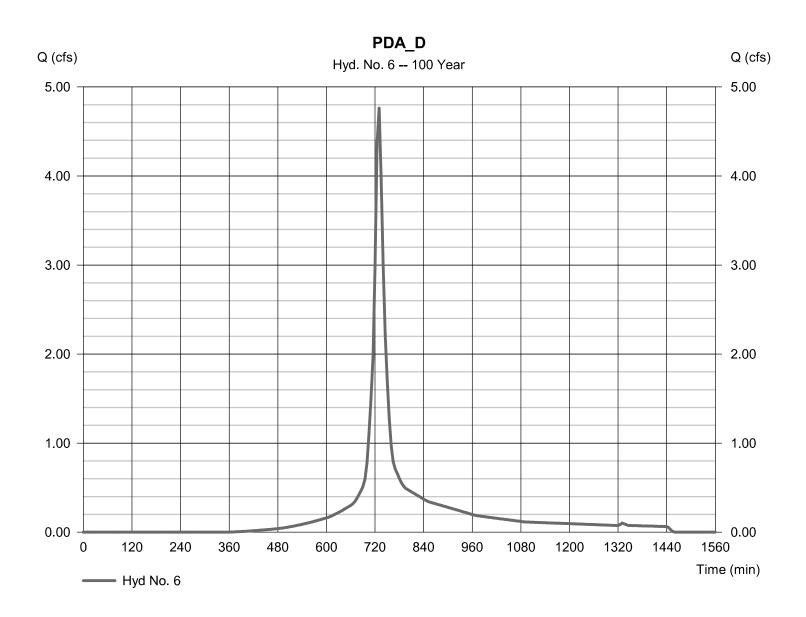
= 40.18 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 170,332 cuft = 89* = 7.770 acCurve number Drainage area

Basin Slope = 0.0 % Hydraulic length = 0 ft

Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 7.770$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

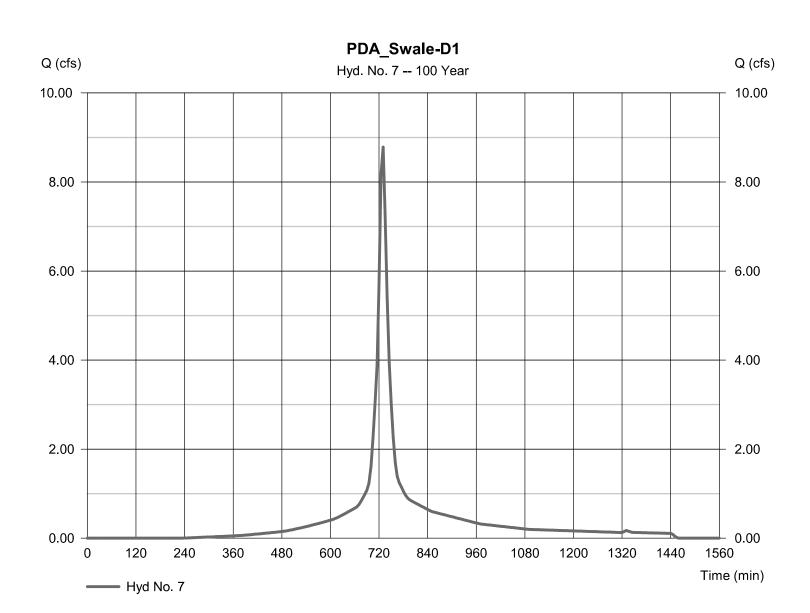
Hyd. No. 6

PDA D

Hydrograph type = SCS Runoff Peak discharge = 4.762 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 19.210 cuft = 79* Curve number Drainage area = 1.070 acBasin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 1.070

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

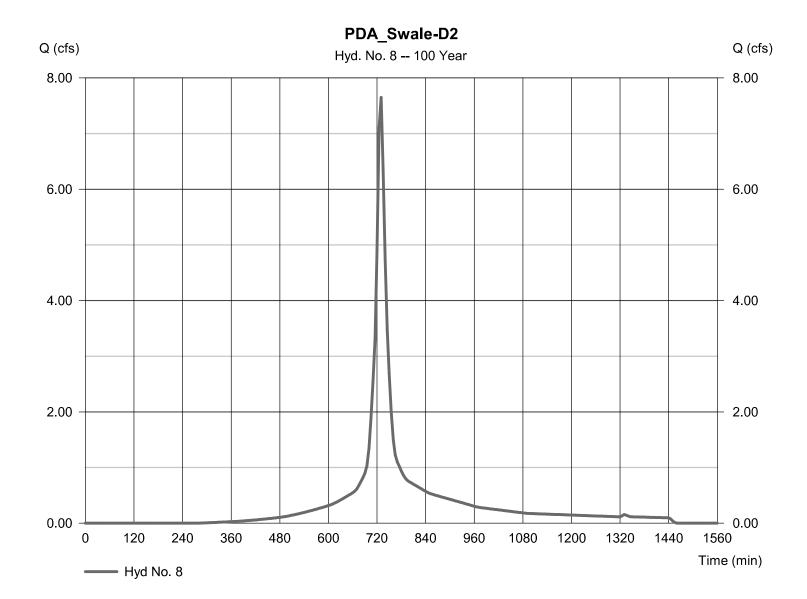

Friday, 12 / 4 / 2015

Hyd. No. 7

PDA_Swale-D1

Hydrograph type = SCS Runoff Peak discharge = 8.785 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 36.751 cuft = 87* Drainage area = 1.740 acCurve number Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 1.740$


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 8

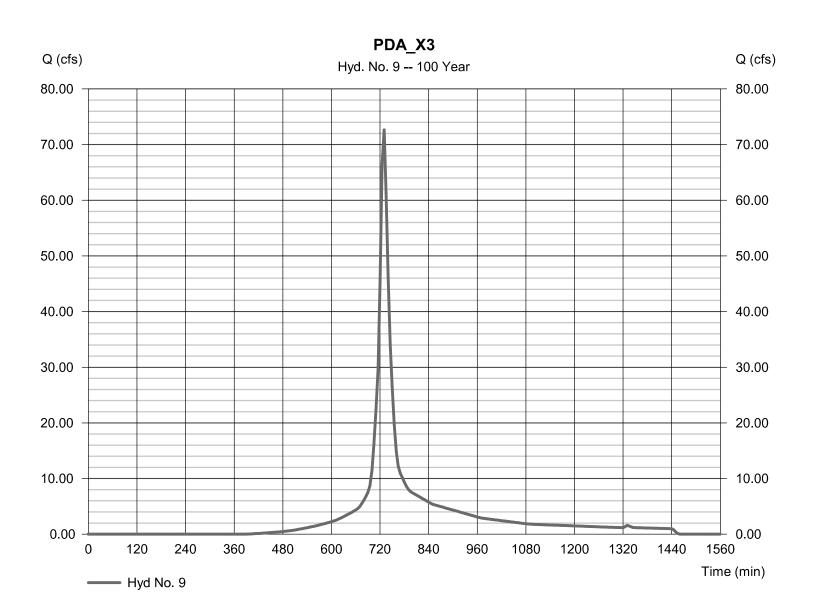
PDA_Swale-D2

Hydrograph type = SCS Runoff Peak discharge = 7.652 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 31,485 cuftDrainage area = 1.580 acCurve number = 84 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 9


PDA X3

Hydrograph type = SCS Runoff Peak discharge = 72.64 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 291.384 cuft = 77* Drainage area = 16.970 acCurve number

= 0 ftBasin Slope = 0.0 % Hydraulic length

Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 7.75 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 16.970

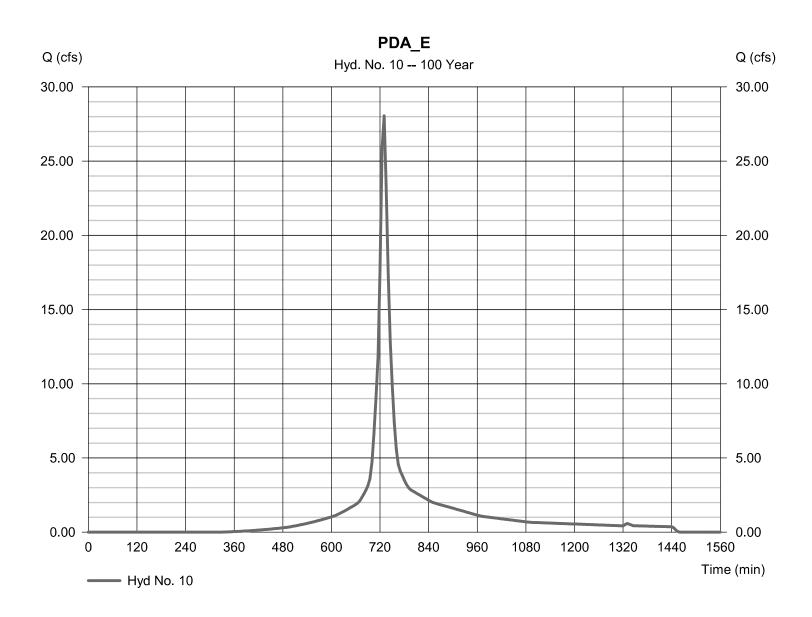
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

= 24 hrs

Friday, 12 / 4 / 2015

= 484

Hyd. No. 10


Storm duration

PDA_E

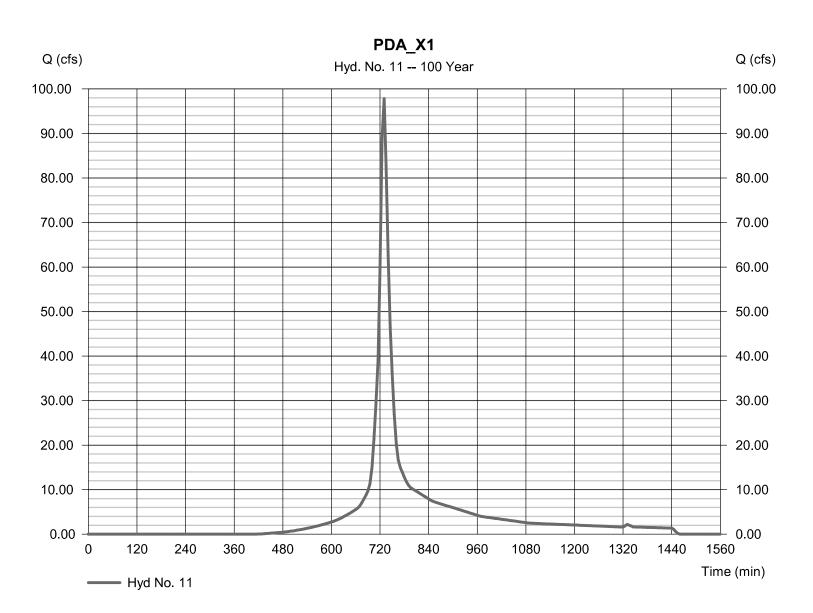
Hydrograph type = SCS Runoff Peak discharge = 28.05 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 113.940 cuft = 6.080 acCurve number = 81* Drainage area Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 7.75 inDistribution = Type III

Shape factor

^{*} Composite (Area/CN) = $[(2.400 \times 95) + (3.000 \times 75)] / 6.080$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015


Hyd. No. 11

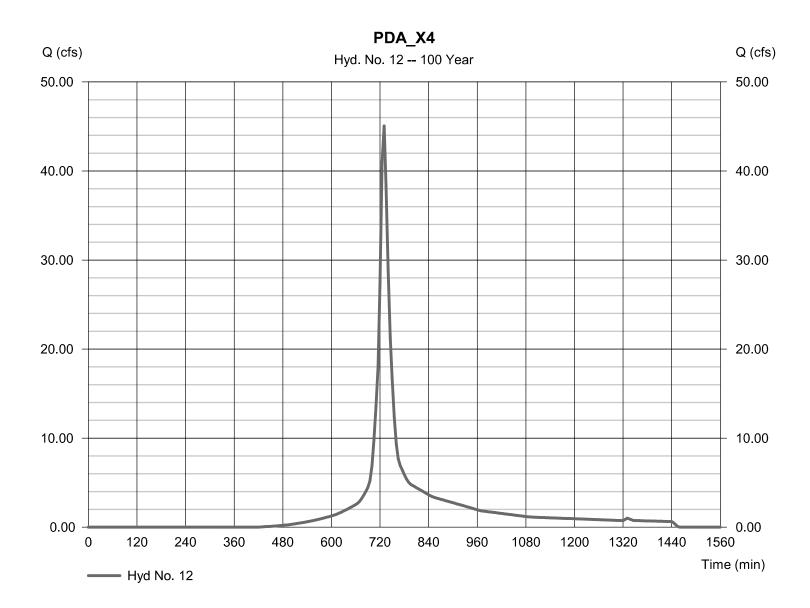
PDA_X1

Hydrograph type = SCS Runoff Peak discharge = 97.84 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 390,778 cuft Drainage area = 23.840 acCurve number = 75* = 0.0 % = 0 ftBasin Slope Hydraulic length Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User

Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 7.75 in Distribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(20.000 x 75)] / 23.840

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

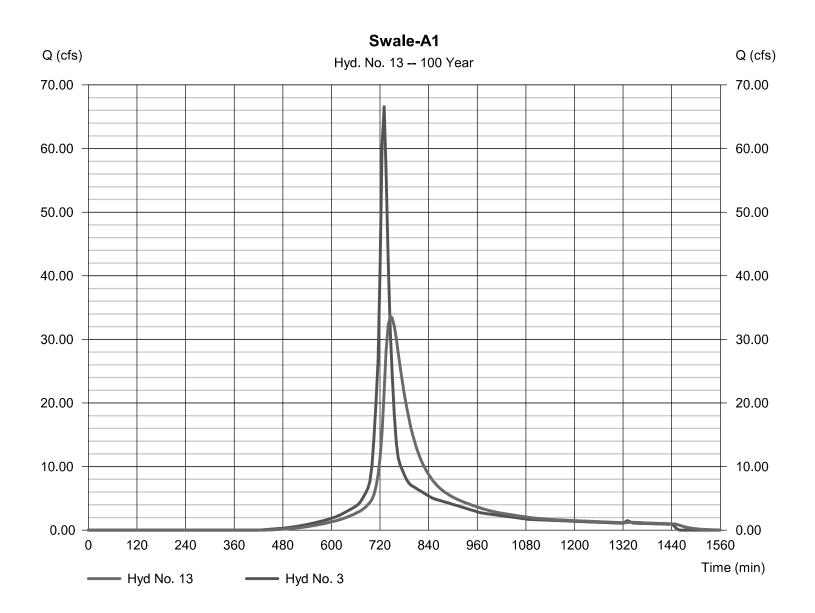
Hyd. No. 12

PDA_X4

Hydrograph type = SCS Runoff Peak discharge = 45.06 cfsStorm frequency = 100 yrsTime to peak = 730 min Time interval = 5 min Hyd. volume = 179,981 cuft Drainage area Curve number = 75 = 10.980 ac

Tc method = User Time of conc. (Tc) = 13.60 min
Total precip. = 7.75 in Distribution = Type III
Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

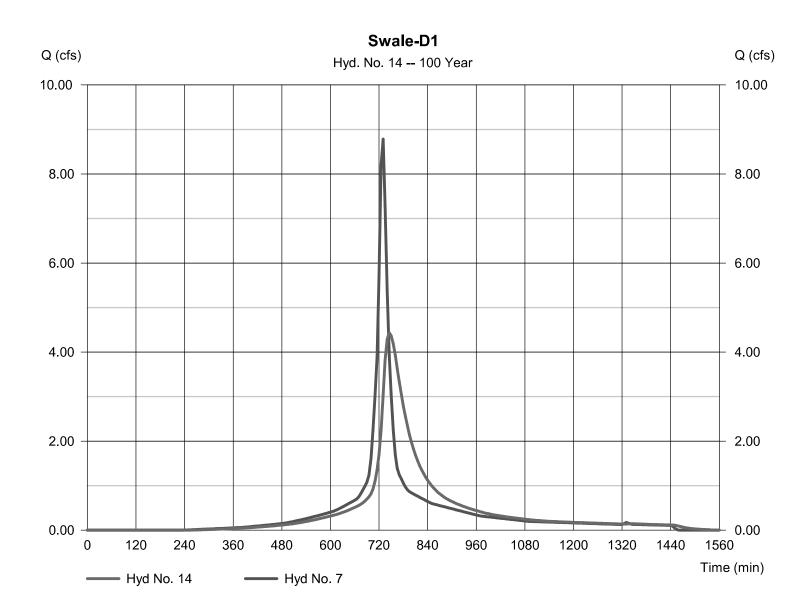
Hyd. No. 13

Swale-A1

Peak discharge Hydrograph type = 33.65 cfs= Reach Storm frequency = 100 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 265.854 cuft = 3 - PDA_Swale-A1 Inflow hyd. No. Section type = Trapezoidal Reach length Channel slope = 5.0 % = 1750.0 ftBottom width = 4.0 ftManning's n = 0.500Side slope Max. depth = 2.0 ft= 4.0:1Rating curve x = 0.264Rating curve m = 1.224Ave. velocity Routing coeff. = 0.1419= 0.73 ft/s

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

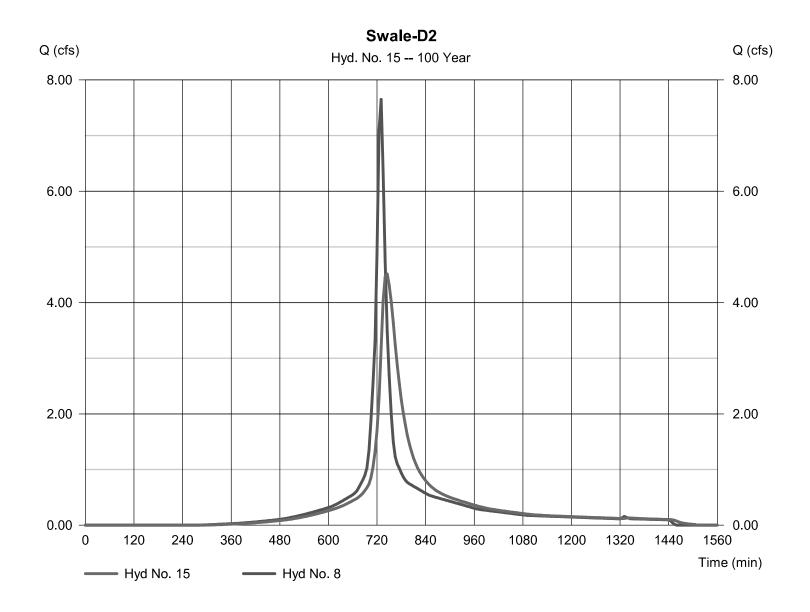
Hyd. No. 14

Swale-D1

Peak discharge Hydrograph type = 4.434 cfs= Reach Storm frequency = 100 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 36.732 cuft Inflow hyd. No. Section type = Trapezoidal = 7 - PDA_Swale-D1 Reach length Channel slope = 5.0 % = 510.0 ftBottom width = 2.0 ftManning's n = 0.500Side slope Max. depth = 1.0 ft= 4.0:1Rating curve x = 0.420Rating curve m = 0.882Ave. velocity = 0.28 ft/sRouting coeff. = 0.1349

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Friday, 12 / 4 / 2015

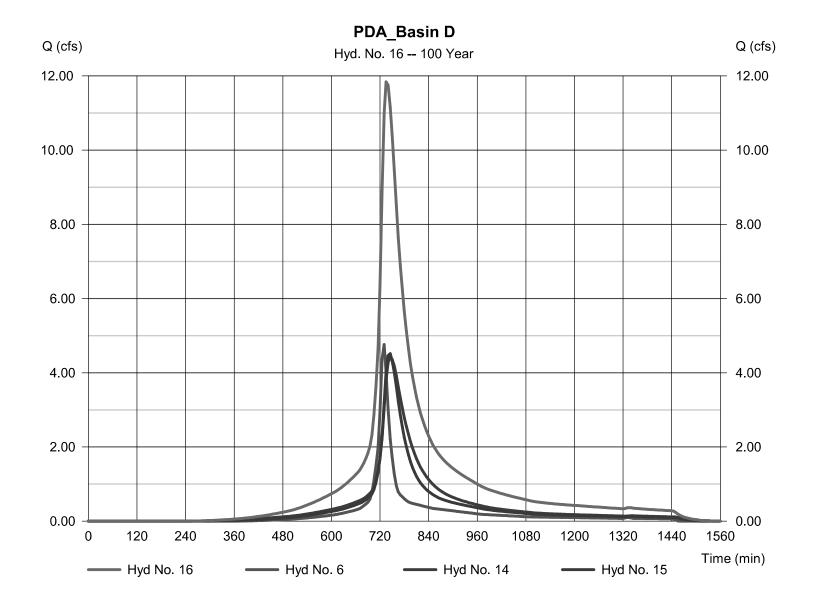
Hyd. No. 15

Swale-D2

Peak discharge Hydrograph type = 4.515 cfs= Reach Storm frequency = 100 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 31,470 cuftInflow hyd. No. Section type = Trapezoidal = 8 - PDA_Swale-D2 Reach length Channel slope = 5.0 % $= 365.0 \, \text{ft}$ Bottom width = 2.0 ftManning's n = 0.500Side slope Max. depth = 1.0 ft= 4.0:1Rating curve x = 0.420Rating curve m = 0.882Ave. velocity = 0.28 ft/sRouting coeff. = 0.1867

Modified Att-Kin routing method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

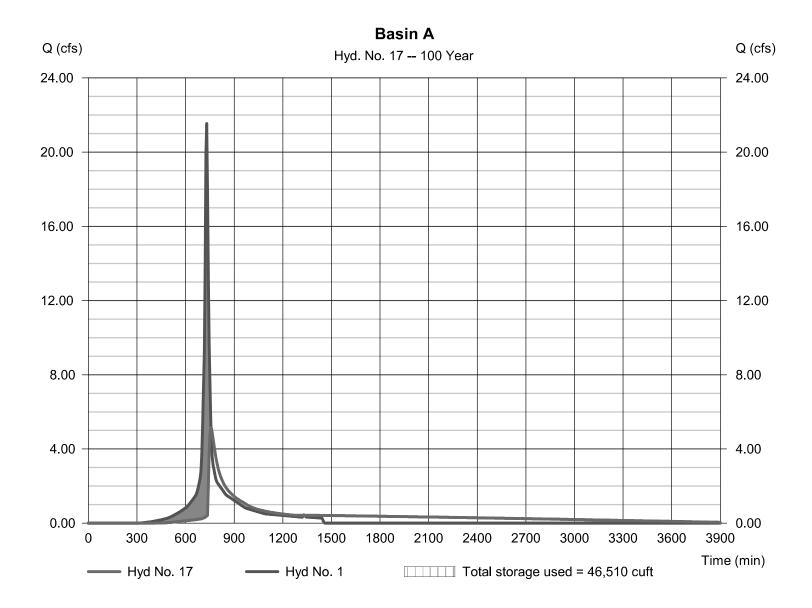

Friday, 12 / 4 / 2015

Hyd. No. 16

PDA_Basin D

Hydrograph type = Combine
Storm frequency = 100 yrs
Time interval = 5 min
Inflow hyds. = 6, 14, 15

Peak discharge = 11.84 cfs
Time to peak = 735 min
Hyd. volume = 87,412 cuft
Contrib. drain. area = 1.070 ac

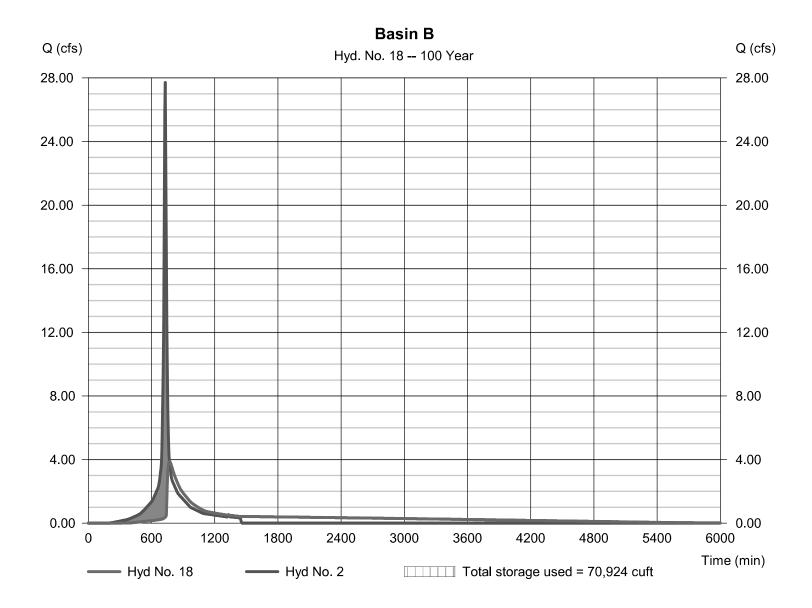

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 17

Basin A

= 5.139 cfsHydrograph type Peak discharge = Reservoir Storm frequency = 100 yrsTime to peak = 755 min Time interval = 5 min Hyd. volume = 87,781 cuftInflow hyd. No. = 1 - PDA A Max. Elevation = 1389.11 ft = Basin A Max Storage = 46,510 cuftReservoir name

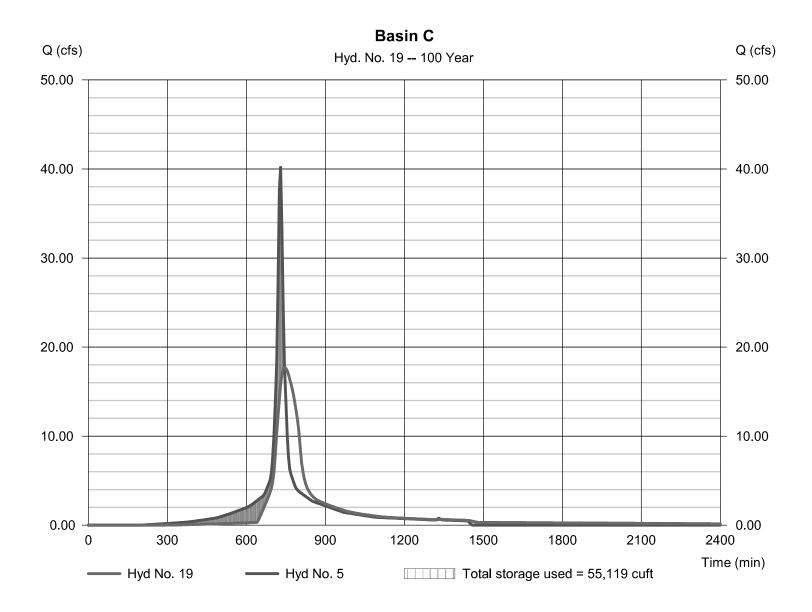

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 18

Basin B

= 3.873 cfsHydrograph type Peak discharge = Reservoir Storm frequency = 100 yrsTime to peak = 770 min Time interval = 5 min Hyd. volume = 117,421 cuft Inflow hyd. No. = 2 - PDA B Max. Elevation = 1378.99 ft= Basin B Max Storage = 70,924 cuft Reservoir name

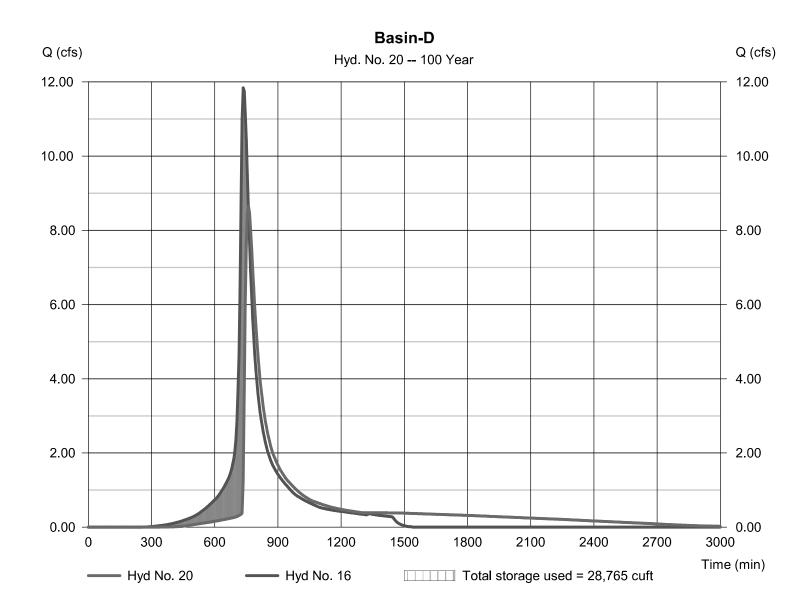

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 19

Basin C

Hydrograph type Peak discharge = 17.68 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 745 min Time interval = 5 min Hyd. volume = 170,289 cuft Inflow hyd. No. = 5 - PDA C Max. Elevation = 1489.18 ft = Basin C = 55,119 cuftReservoir name Max. Storage

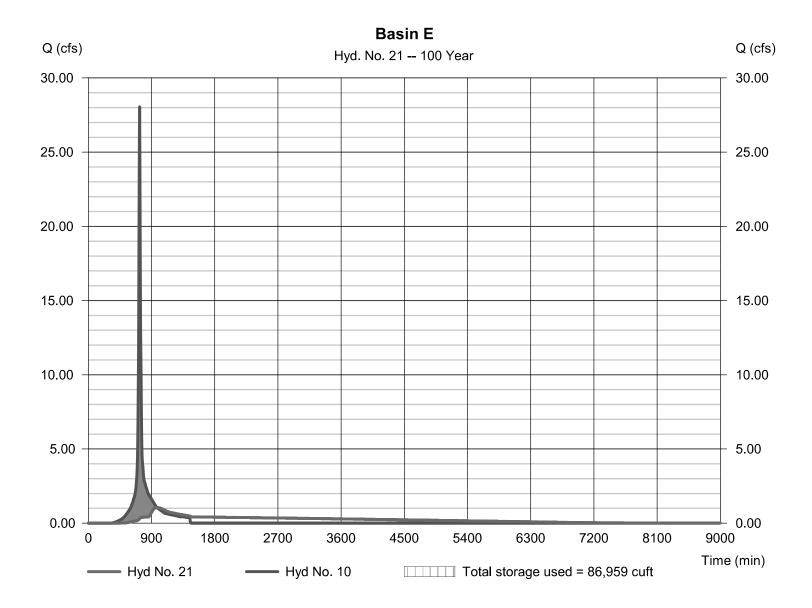

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 20

Basin-D

= 8.657 cfsHydrograph type Peak discharge = Reservoir Storm frequency = 100 yrsTime to peak = 760 min Time interval = 5 min Hyd. volume = 87,382 cuft Inflow hyd. No. Max. Elevation = 1498.89 ft = 16 - PDA_Basin D = Basin D Max Storage = 28,765 cuftReservoir name

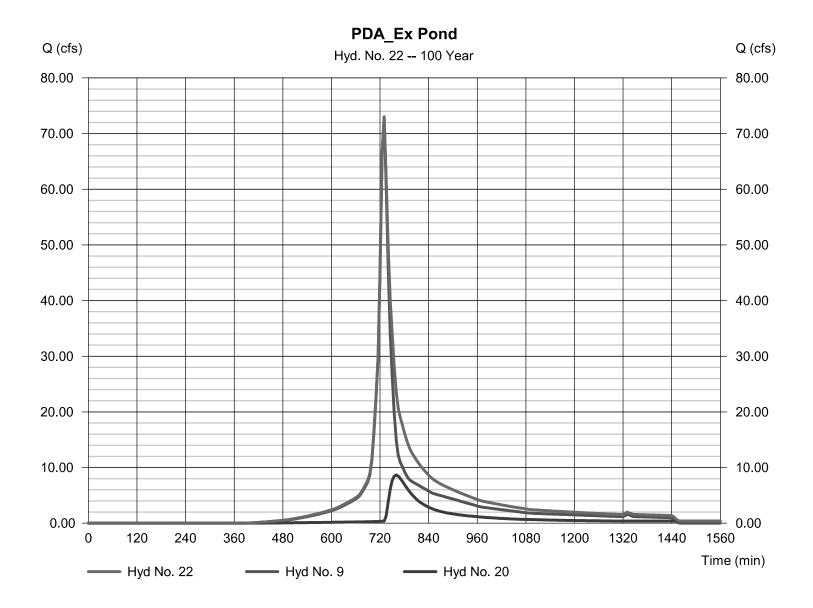

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 21

Basin E

Hydrograph type Peak discharge = 1.052 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 975 min Time interval = 5 min Hyd. volume = 113,833 cuft Inflow hyd. No. = 10 - PDA E Max. Elevation = 1498.65 ft = Basin E Max Storage = 86,959 cuftReservoir name

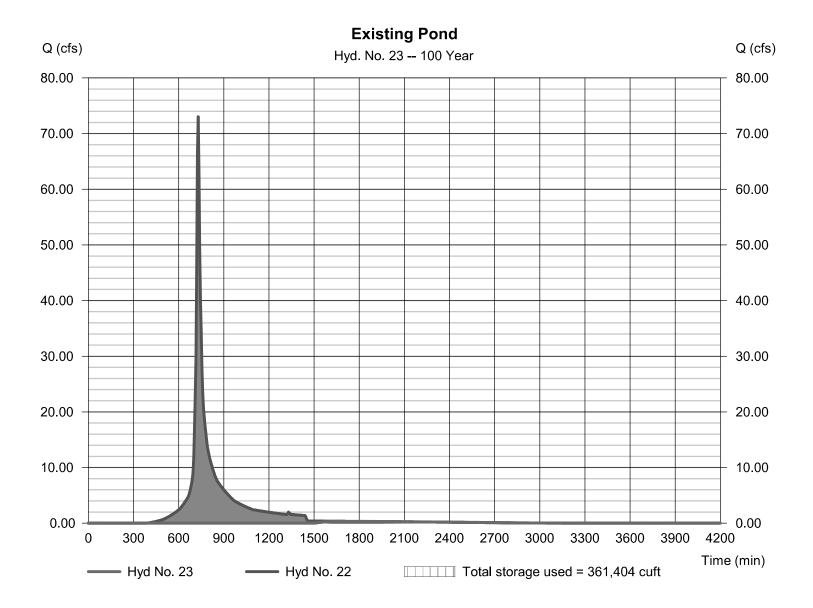

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 22

PDA_Ex Pond

Hydrograph type = Combine Peak discharge = 73.02 cfsStorm frequency Time to peak = 100 yrs= 730 min Time interval = 5 min Hyd. volume = 378,766 cuft Inflow hyds. = 9, 20Contrib. drain. area = 16.970 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 23

Existing Pond

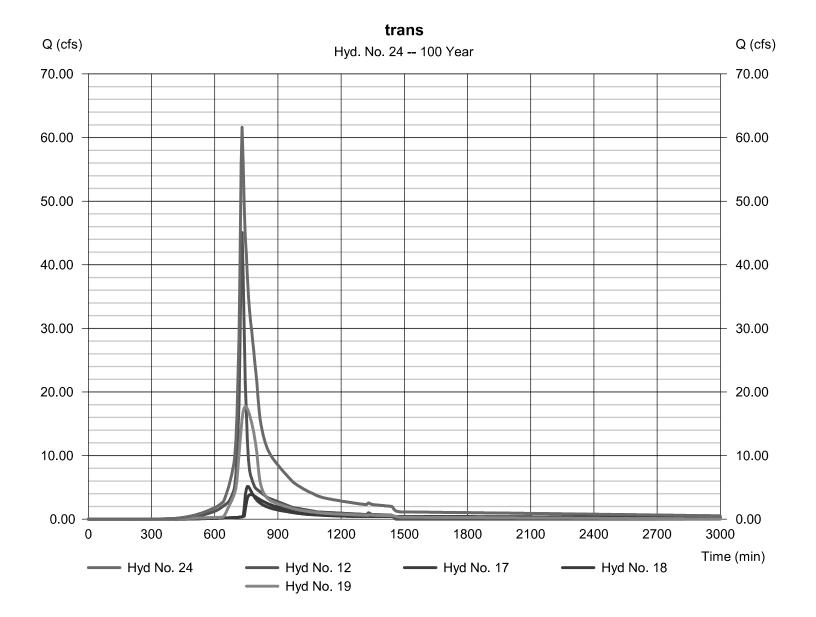
Hydrograph type Peak discharge = 0.329 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 1745 min Time interval = 5 min Hyd. volume = 18.798 cuft Max. Elevation Inflow hyd. No. = 22 - PDA_Ex Pond $= 1489.02 \, \text{ft}$ = Ex. Pond Reservoir name Max. Storage = 361,404 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

= 61.62 cfs

= 730 min

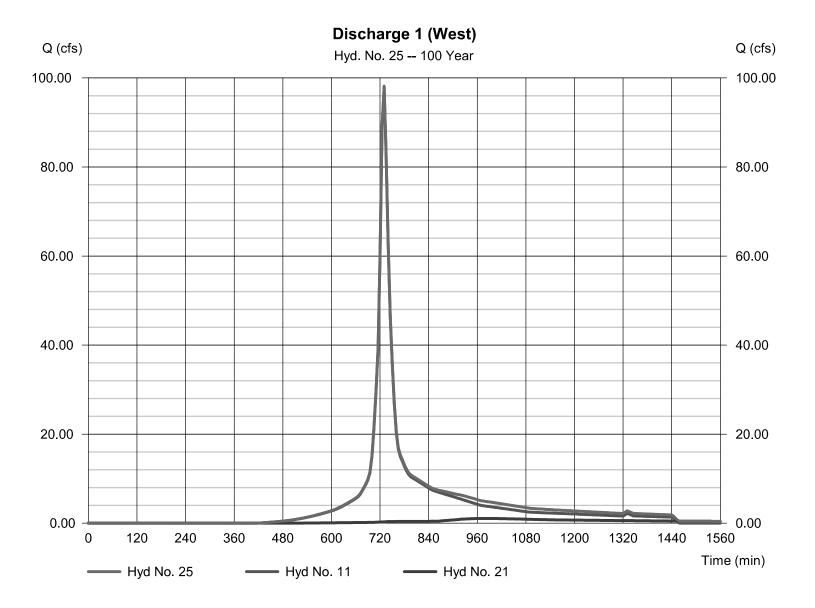

= 555,472 cuft

= 10.980 ac

Hyd. No. 24

trans

Hydrograph type= CombinePeak dischargeStorm frequency= 100 yrsTime to peakTime interval= 5 minHyd. volumeInflow hyds.= 12, 17, 18, 19Contrib. drain. area


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 25

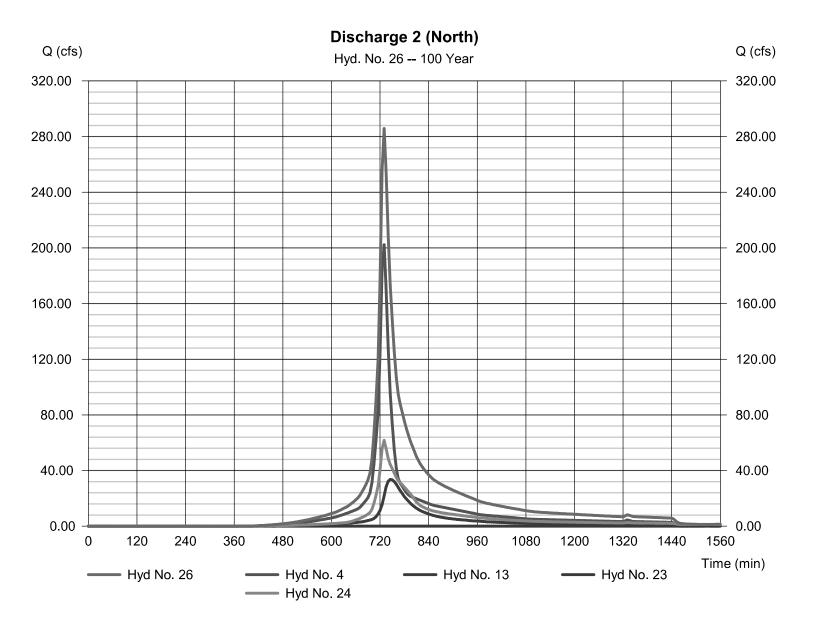
Discharge 1 (West)

Hydrograph type = Combine Peak discharge = 98.15 cfsStorm frequency = 100 yrsTime to peak $= 730 \, \text{min}$ Time interval = 5 min Hyd. volume = 504,611 cuft Inflow hyds. = 11, 21Contrib. drain. area = 23.840 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 12 / 4 / 2015

Hyd. No. 26


Discharge 2 (North)

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 5 min

Inflow hyds. = 4, 13, 23, 24

Peak discharge = 285.75 cfs Time to peak = 730 min Hyd. volume = 1,649,788 cuft

Contrib. drain. area = 48.250 ac

APPENDIX I

STORM SEWER PIPE CALCULATIONS

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Fu ll Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
B09	A111	1.862	6.089	119.0	0.013	0.840	11.43	20.74	1,455.30	1,445.20	1,444.20	1,446.41	1,446.92	8.10	2.00
B10	A110 A110	1.898	6.015	126.0	0.013	1.032	11.51	22.98	1,448.20 1,448.20	1,438.60	1,437.30	1,445.26 1,439.82	1,439.85 1,440.33	7.60	2.00
	A109	11050	01013	12010	0.025	11002	11.51	22.50	1,441.30	1,150100	2,10,100	1,438.30	1,435.58	,100	2.00
B11	A109	2.004	5.966	73.0	0.013	1.370	12.05	26.48	1,441.30	1,433.50	1,432.50	1,434.75	1,435.28	5.80	5.80
B01	A108 A118	0.165	6.500	59.0	0.013	1.017	1.08	10.59	1,440.30 1,499.50	1,495.50	1,494.90	1,433.46 1,495.89	1,431.68 1,496.03	2.50	2.30
501	A117	0.105	0.500	33.0	0.013	1.017	1.00	10.55	1,498.70	1,155.50	1,151.50	1,495.22	1,491.27	2.50	2.30
B02	A117	0.317	6.436	50.0	0.013	1.000	2.05	10.50	1,498.70	1,490.50	1,490.00	1,491.04	1,491.24	6.70	2.50
DO3	A116 A116	0.715	6 201	180.0	0.013	2 611	4.60	19.96	1,494.00	1 494 00	1,477.50	1,490.45	1,485.15	0.50	2.00
B03	A115	0.715	6.391	180.0	0.013	3.611	4.00	19.90	1,494.00 1,481.00	1,484.00	1,4/7.50	1,484.82 1,477.99	1,485.16 1,475.39	8.50	2.00
B11a	A108a	0.078	6.500	66.0	0.013	1.515	0.51	12.93	1,437.50	1,433.50	1,432.50	1,433.77	1,433.86	2.50	6.30
	A108								1,440.30			1,432.70	1,431.68		
B19	A111b A111a	0.121	6.500	58.0	0.013	1.034	0.79	6.57	1,457.90 1,458.30	1,453.90	1,453.30	1,454.25 1,453.59	1,454.37 1,449.97	2.75	3.75
B10a	A111a	0.003	6.500	60.0	0.013	1.333	0.02	7.46	1,448.20	1,445.00	1,444.20	1,445.06	1,445.08	1.95	2.75
	A110								1,448.20	,	,	1,444.25	1,439.85		
C-04	B117	0.250	6.147	183.0	0.013	1.858	1.55	14.32	1,473.40	1,463.40	1,460.00	1,463.87	1,464.04	8.50	5.00
C-10	B116 B202	0.925	5.975	169.0	0.013	1.302	5.57	11.98	1,466.50 1,440.70	1,433.20	1,431.00	1,460.33 1,434.11	1,459.31 1,434.49	6.00	4.00
0.10	B201	0.525	31373	10510	0.025	1.502	0.57	11.50	1,436.50	1,100120	1,101100	1,431.72	1,432.15	0.00	
C-13	B109	3.010	5.754	68.0	0.013	1.765	17.46	30.05	1,431.70	1,421.20	1,420.00	1,422.71	1,423.44	8.50	2.00
C-40	B108 B206	0.236	6.301	36.0	0.013	1.667	1.50	8.34	1,424.00 1,453.10	1,449.60	1,449.00	1,421.13 1,450.08	1,416.92 1,450.27	2.25	2.45
C-40	B205	0.230	0.301	30.0	0.013	1.007	1.50	0.54	1,452.70	1,449.00	1,449.00	1,449,36	1,446.05	2.23	2.43
C-42	B204	0.556	6.123	219.0	0.013	2.420	3.43	16.34	1,447.50	1,442.00	1,436.70	1,442.71	1,442.98	4.00	2.50
0.25	B203	0.400	6.500	442.0	0.040	0.670	2.67	F 20	1,440.70	4 420 00	4 427 25	1,437.53	1,437.71	2.75	2.20
C-25	B303 B302	0.408	6.500	112.0	0.013	0.670	2.67	5.29	1,432.00 1,430.70	1,428.00	1,427.25	1,428.66 1,427.88	1,428.92 1,428.07	2.75	2.20
C-26	B302	0.638	6.392	60.0	0.013	0.833	4.11	9.59	1,430.70	1,427.00	1,426.50	1,427.78	1,428.08	2.20	2.70
	B301								1,430.70			1,427.63	1,427.76		
C-27	B301	0.970	6.344	76.0	0.013	0.395	6.20	6.60	1,430.70	1,426.50	1,426.20	1,427.63	1,427.92	2.70	4.00
C-31	B109 B602	0.278	6.500	153.0	0.013	3.464	1.82	19.55	1,431.70 1,447.70	1,437.70	1,432.40	1,427.16 1,438.21	1,423.79 1,438.39	8.50	2.00
	B601	5.275	0.000	200.0	0.020		-10-	25.00	1,435.90	2, .07 0	_, .0	1,432.71	1,433.15	0.00	
C-32	B601	0.278	6.408	130.0	0.013	1.462	1.80	12.70	1,435.90	1,431.90	1,430.00	1,432.40	1,432.59	2.50	0.50
C-41	B600 B205	0.293	6.272	162.0	0.013	0.988	1.85	6.42	1,432.00 1,452.70	1,445.10	1,443.50	1,430.38 1,445.64	(N/A) 1,445.85	6.35	2.75
[C-41	B203	0.293	0.272	102.0	0.013	0.500	1.03	0.42	1,432.70	1,775.10	1,773.30	1,443.96	1,442.86	0.35	2./3
C-26	B404	4.330	6.363	81.0	0.013	0.494	27.77	28.82	1,433.90	1,422.35	1,421.95	1,424.30	1,425.01	9.05	8.05
D 20	B403	1 004	E ===	60.6	0.012	2 244	44.46	20.70	1,432.50	4 450 00	4 440 00	1,423.75	1,424.58	4.00	2.00
D-30	X411	1.984	5.550	68.0	0.013	2.941	11.10	38.79	1,453.00	1,450.00	1,448.00	1,451.19	1,451.69	1.00	0.00

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

5/10/2016

Project Engineer: Bentley StormCAD V8i (SELECTseries 3) [08.11.03.83] Page 1 of 10

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Full Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
	X410								1,450.00			1,448.75	(N/A)		
E-01	C304	0.631	6.366	112.0	0.013	1.339	4.05	7.48	1,622.20	1,612.50	1,611.00	1,613.31	1,613.67	8.45	4.25
F 02	C303	0.770	6 201	110.0	0.012	2.024	4.04	14.00	1,616.50	1 600 50	1 606 10	1,611.66	1,609.96	6.50	2.50
E-02	C303 C302	0.779	6.291	118.0	0.013	2.034	4.94	14.98	1,616.50 1,610.10	1,608.50	1,606.10	1,609.35 1,606.69	1,609.71 1,602.97	6.50	2.50
E-03	C302	0.878	6.226	62.0	0.013	0.484	5.51	7,31	1,610.10	1,601.10	1,600.80	1,600.09	1,602.39	7.50	3.70
	C301	0.070	0,220	02.0	0.013	0.101	5.51	7.51	1,606.00	1,001.10	1,000.00	1,601.71	1,600.58	7.50	5.70
E-04	C301	0.976	6.169	46.0	0.013	0.978	6.07	10.39	1,606.00	1,599.25	1,598.80	1,600.20	1,600.61	5.25	2.50
	C123				5.525	5.575		20.00	1,602.80	_,	2,070100	1,599.63	1,593.02	5.25	
E-05	C123	3.413	6.106	86.0	0.013	3.023	21.01	39.33	1,602.80	1,590.80	1,588.20	1,592.44	1,593.34	10.00	2.00
	C122								1,592.20	·	·	1,589.86	1,590.74		
E-10	C116	4.645	5.957	56.0	0.013	2.321	27.89	34.47	1,558.00	1,552.00	1,550.70	1,553.83	1,555.16	4.00	2.00
	C115								1,554.70			1,552.53	1,553.86		
E-11	C115	4.798	5.946	40.0	0.013	1.000	28.76	41.01	1,554.70	1,550.70	1,550.30	1,552.53	1,553.40	1.50	2.00
	C114								1,554.80			1,551.90	1,547.82		
E-14	C113	5.105	5.880	136.0	0.013	0.882	30.26	38.53	1,547.50	1,537.50	1,536.30	1,539.38	1,540.29	7.50	2.00
	C112								1,540.80			1,538.18	1,539.09		
E-15	C112	5.152	5.841	24.0	0.013	1.250	30.33	45.86	1,540.80	1,536.30	1,536.00	1,538.18	1,539.09	2.00	2.30
	C111								1,540.80			1,537.62	1,533.95		
E-19	C107	5.478	5.758	62.0	0.013	1.935	31.79	57.06	1,521.50	1,515.10	1,513.90	1,517.02	1,517.98	3.90	1.50
F 20	C106	5 563	5.745	4240	0.040	4 000	22.24	44.40	1,517.90	4 500 75	4 507 50	1,515.33	1,512.56	6.65	4 50
E-20	C106	5.562	5.745	124.0	0.013	1.008	32.21	41.18	1,517.90	1,508.75	1,507.50	1,510.68	1,511.66	6.65	1.50
F 24	C105	F 043	F 711	60.0	0.012	1.667	24.24	F2 0F	1,511.50	1 504 00	1 502 00	1,509.17	1,506.27	F 00	7.00
E-21	C105 C104	5.943	5.711	60.0	0.013	1.667	34.21	52 . 95	1,511.50	1,504.00	1,503.00	1,505.99 1,504.55	1,507.03 1,506.40	5.00	7.00
E-30	C104	0.035	6.500	24.0	0.013	1.250	0.23	7.22	1,512.50 1,510.50	1,507.00	1,506.70	1,504.55	1,500.40	2.25	2.75
L-30	C105b	0.033	0.500	24.0	0.013	1.230	0.23	7.22	1,510.70	1,507.00	1,300.70	1,507.12	1,507.23	2.23	2./3
E-25	C104a	0.179	6.500	84.0	0.013	0.893	1.17	6.10	1,508.50	1,504.50	1,503.75	1,504.93	1,505.08	2.75	7.50
- 23	C104	01173	01300	0 110	01013	01033	1117	0110	1,512.50	1,50 1150	1,505175	1,504.62	1,506.40	21,3	7130
E-40	C125b	0.343	6.500	25.0	0.013	1.200	2.25	7.08	1,625.50	1,621.50	1,621.20	1,622.10	1,622.33	2.75	2.75
	C125a								1,625.20	_,	_,	1,621.69	1,619.43		
E-45	C127a	0.114	6.500	34.0	0.013	0.882	0.74	6.07	1,620.80	1,616.80	1,616.50	1,617.14	1,617.26	2.75	3.05
	C127								1,620.80		,	1,616.80	1,612.92		
E-46	C127	0.942	6,262	50.0	0.013	1.600	5.94	13.29	1,620.80	1,611.80	1,611.00	1,612.74	1,613.14	7.50	4.80
	C126								1,617.30			1,611.96	1,612.34		
E-47	C126	0.979	6.234	28.0	0.013	1.071	6.15	10.87	1,617.30	1,611.00	1,610.70	1,611.96	1,612.37	4.80	4.50
	C125								1,616.70			1,611.52	1,609.69		
E05a	C122	3.531	6.077	41.0	0.013	1.707	21.63	29.56	1,592.20	1,588.20	1,587.50	1,589.86	1,590.80	2.00	2.50
	C121								1,592.00			1,588.85	1,586.11		
C-40	A403	0.129	6.500	141.0	0.013	0.993	0.84	6.44	1,634.80	1,630.80	1,629.40	1,631.16	1,631.29	2.75	2.85
	A402				_				1,633.50			1,629.85	1,629.92		
H-37	E603	0.241	6.363	74.0	0.013	0.405	1.54	6.69	1,631.50	1,628.50	1,628.20	1,628.99	1,629.14	1.50	1.80
	E602			1		ļ		l	1,631.50			1,628.85	1,628.92		

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Fu ll Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
H-38	E602 E601	0.453	6.263	84.0	0.013	0.476	2.86	7.25	1,631.50 1,638.00	1,628.20	1,627.80	1,628.85 1,628.55	1,629.09 1,628.71	1.80	8.70
H-39	E601 E600	0.622	6.173	216.0	0.013	0.602	3.87	8.15	1,638.00 1,630.00	1,627.80	1,626.50	1,628.55 1,627.23	1,628.85 (N/A)	8.70	2.00
H-20	E127 E126	0.160	6.500	28.0	0.013	1.429	1.05	7.72	1,636.00 1,635.70	1,631.90	1,631.50	1,632.30 1,632.17	1,632.45 1,632.20	2.85	2.95
H-21	E126 E125	0.422	6.473	170.0	0.013	2.353	2.76	9.91	1,635.70 1,631.50	1,631.50	1,627.50	1,632.17 1,632.17	1,632.43 1,628.50	2.95	2.75
H-24	E124 E123	0.809	6.272	91.0	0.013	0.879	5.12	6.06	1,627.70 1,626.60	1,623.70	1,622.90	1,624.62 1,623.85	1,625.05 1,624.00	2.75	2.45
H-17	E401 E400	0.687	6.386	127.0	0.013	1.024	4.42	6.54	1,630.50 1,622.00	1,621.30	1,620.00	1,622.15 1,620.75	1,622.54 (N/A)	7.95	0.75
H-26a	E203 E202	0.156	6.500	29.0	0.013	0.345	1.02	3.79	1,632.50 1,632.40	1,627.80	1,627.70	1,628.26 1,628.20	1,628.36 1,628.28	3.45	3.45
CO-402	B204a B204	0.094	6.500	58.0	0.013	0.862	0.62	6.00	1,447.00 1,447.50	1,444.00	1,443.50	1,444.31 1,443.77	1,444.41 1,442.86	1.75	2.75
CO-405	B116a B116	0.151	6.500	56.0	0.013	0.893	0.99	6.10	1,466.50 1,466.50	1,462.50	1,462.00	1,462.89 1,462.34	1,463.03 1,459.31	2.75	3.25
CO-406	B116 B116 B115	0.515	6.004	175.0	0.013	0.743	3.11	9.05	1,466.50	1,458.20	1,456.90	1,458.87 1,457.64	1,459.13	6.80	2.80
CO-407	B115	0.630	5.908	58.0	0.013	0.862	3.75	9.75	1,461.20 1,461.20	1,456.90	1,456.40	1,457.64	1,457.84 1,457.93	2.80	3.20
CO-409	B114 B111	0.752	5.826	152.0	0.013	2.303	4.41	34.33	1,461.10 1,437.50	1,432.00	1,428.50	1,457.05 1,432.74	1,451.95 1,433.01	3.50	2.00
CO-410	B110 B110	1.014	5.776	74.0	0.013	2.432	5.90	35.28	1,432.50 1,432.50	1,427.50	1,425.70	1,428.98 1,428.36	1,429.24 1,428.68	3.00	4.00
CO-411	B109 B201	1.027	5.912	185.0	0.013	2.324	6.12	16.01	1,431.70 1,436.50	1,430.50	1,426.20	1,426.25 1,431.46	1,423.79 1,431.87	4.50	4.00
CO-412	B109 B203	0.767	5.999	56.0	0.013	1.071	4.64	10.87	1,431.70 1,440.70	1,436.70	1,436.10	1,426.84 1,437.53	1,423.79 1,437.86	2.50	3.10
CO-413	B202 B118	0.183	6.236	83.0	0.013	0.964	1.15	6.34	1,440.70 1,474.50	1,468.10	1,467.30	1,436.78 1,468.52	1,434.65 1,468.68	5.15	4.85
CO-417	B117 A111a	0.242	6.433	226.0	0.013	0.575	1.57	7.97	1,473.40 1,458.30	1,449.30	1,448.00	1,467.66 1,449.77	1,464.11 1,449.94	7.50	5.80
CO-419	A111 A113	1.266	6.227	180.0	0.013	2,111	7.94	15.26	1,455.30 1,468.00	1,458.00	1,454.20	1,448.45 1,459.09	1,446.60 1,459.61	8.50	2.50
CO-422	A112 C113a	0.091	6.500	35.0	0.013	0.714	0.60	5.46	1,458.20 1,547.50	1,544.25	1,544.00	1,454.97 1,544.55	1,453.09 1,544.66	2.00	2.25
CO-423	C113 C204	0.084	6.500	65.0	0.013	4.462	0.55	13.64	1,547.50 1,532.80	1,528.00	1,525.10	1,544.28 1,528.29	1,539.51 1,528.39	3.55	4.55
CO-424	C203 C203	0.210	6.450	85.0	0.013	1.176	1.36	7.01	1,530.90 1,530.90	1,525.00	1,524.00	1,525.46 1,525.46	1,525.52 1,525.63	4.65	3.25
CO-425	C202 C202	0.289	6.370	167.0	0.013	2.335	1.86	9.87	1,528.50 1,528.50	1,520.00	1,516.10	1,524.37 1,520.54	1,520.85 1,520.75	7.25	3.45

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Full Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
CO-430	C201 C201a C201	0.222	6.500	60.0	0.013	1.000	1.45	6.46	1,520.80 1,521.20 1,520.80	1,516.70	1,516.10	1,516.47 1,517.18 1,516.50	1,514.14 1,517.35 1,514.14	3.25	3.45
CO-431	C111 C110	5.198	5.835	147.0	0.013	2.245	30.57	61.45	1,540.80 1,532.00	1,530.80	1,527.50	1,532.68 1,529.39	1,533.61 1,530.31	7.50	2.00
CO-432	C110 C109	5.238	5.806	24.0	0.013	1.042	30.65	41.86	1,532.00 1,532.00	1,527.50	1,527.25	1,529.39 1,528.93	1,530.31 1,525.08	2.00	2.25
CO-435	C117 C116	4.511	5.979	95.0	0.013	1.789	27.18	30.26	1,565.70 1,558.00	1,555.70	1,554.00	1,557.51 1,555.50	1,558.79 1,553.95	8.00	2.00
CO-436	C116a C116	0.045	6.500	41.0	0.013	1.220	0.30	7.13	1,558.50 1,558.00	1,555.25	1,554.75	1,555.46 1,554.92	1,555.53 1,553.95	2.00	2.00
CO-437	C117a C117	0.414	6.500	42.0	0.013	2.976	2.71	11.14	1,567.20 1,565.70	1,563.70	1,562.45	1,564.36 1,562.87	1,564.62 1,558.37	2.25	2.00
CO-438	C119a C119	0.336	6.500	40.0	0.013	1.250	2.20	7.22	1,579.50 1,579.00	1,576.25	1,575.75	1,576.84 1,576.22	1,577.07 1,571.16	2.00	2.00
CO-439	C303a C303	0.073	6.500	24.0	0.013	0.833	0.48	5.90	1,616.70 1,616.50	1,612.70	1,612.50	1,612.97 1,612.74	1,613.06 1,609.96	2.75	2.75
CO-441	C307 C306	0.134	6.500	27.0	0.013	1.852	0.88	8.79	1,629.50 1,629.50	1,626.00	1,625.50	1,626.37 1,626.03	1,626.50 1,626.08	2.25	2.75
CO-443	C304a C304	0.113	6.500	26.0	0.013	0.769	0.74	5.67	1,622.20 1,622.20	1,618.70	1,618.50	1,619.04 1,618.80	1,619.16 1,613.76	2.25	2.45
CO-444	C130 C129	0.253	6.500	24.0	0.013	1.250	1.66	7.22	1,631.60 1,631.60	1,627.60	1,627.30	1,628.11 1,627.96	1,628.30 1,628.06	2.75	3.05
CO-445	C129 C128	0.410	6.479	173.0	0.013	1.792	2.68	8.65	1,631.60 1,628.50	1,627.30	1,624.20	1,627.96 1,624.68	1,628.22 1,621.24	3.05	3.05
CO-446	C128 C127	0.711	6.363	180.0	0.013	2.000	4.56	9.14	1,628.50 1,620.80	1,620.10	1,616.50	1,620.97 1,617.12	1,621.36 1,612.92	7.15	3.05
CO-447	C125a C125	0.647	6.480	175.0	0.013	2.714	4.23	10.64	1,625.20 1,616.70	1,618.20	1,613.45	1,619.03 1,614.00	1,619.40 1,609.69	5.75	2.00
CO-448	C125 C124	1.834	6.215	127.0	0.013	1.417	11.49	12.50	1,616.70 1,610.50	1,607.80	1,606.00	1,609.09 1,607.13	1,609.87 1,602.85	7.40	3.00
CO-449	C124 C123	2.061	6.150	95.0	0.013	1.789	12.78	14.05	1,610.50 1,602.80	1,600.50	1,598.80	1,601.84 1,599.92	1,602.75 1,593.02	8.50	2.50
CO-450	C124a C124	0.126	6.500	33.0	0.013	1.667	0.83	8.34	1,611.30 1,610.50	1,607.80	1,607.25	1,608.16 1,607.52	1,608.28 1,602.85	2.25	2.00
CO-451	C128a C128	0.165	6.500	24.0	0.013	1.250	1.08	7.22	1,628.50 1,628.50	1,624.50	1,624.20	1,624.91 1,624.53	1,625.06 1,621.24	2.75	3.05
CO-453	E125a E125	0.138	6.500	30.0	0.013	1.333	0.91	7.46	1,631.90 1,631.50	1,627.90	1,627.50	1,628.27 1,628.35	1,628.41 1,628.50	2.75	2.75
CO-454	E125 E124	0.684	6.371	179.0	0.013	2.123	4.39	9.41	1,631.50 1,627.70	1,627.50	1,623.70	1,628.35 1,624.62	1,628.73 1,624.94	2.75	2.75
CO-455	E123a E123	0.475	6.500	24.0	0.013	0.417	3.11	4.17	1,626.60 1,626.60	1,623.00	1,622.90	1,623.90 1,623.85	1,624.07 1,624.00	2.35	2.45

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Fu ll Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
CO-456	E123 E122	1.544	6.204	68.0	0.013	1.029	9.66	10.66	1,626.60 1,627.20	1,622.65	1,621.95	1,623.85 1,623.23	1,624.48 1,623.79	2.45	3.75
CO-457	E202 E201	0.249	6.454	136.0	0.013	1.176	1.62	7.01	1,632.40 1,630.10	1,627.70	1,626.10	1,628.20 1,626.51	1,628.39 1,624.73	3.45	2.75
CO-458	E201 E122	0.249	6.332	73.0	0.013	0.959	1.59	6.33	1,630.10 1,627.20	1,623.90	1,623.20	1,624.40 1,623.63	1,624.59 1,623.79	4.95	2.75
CO-459	E122 E121	1.793	6.162	69.0	0.013	1.377	11.14	12.32	1,627.20 1,625.00	1,621.95	1,621.00	1,623.23 1,622.12	1,623.98 1,617.24	3.75	2.50
CO-463	E105 E104	1.793	5.862	33.0	0.013	1.515	10.60	12.93	1,517.00 1,510.00	1,507.00	1,506.50	1,508.25 1,507.56	1,508.95 1,502.92	8.50	2.00
CO-464	E104 E103	1.793	5.852	84.0	0.013	2.024	10.58	14.94	1,510.00 1,510.00 1,502.00	1,500.70	1,499.00	1,501.95 1,499.94	1,502.65 1,500.95	7.80	1.50
CO-465	E103 E102	1.793	5.829	190.0	0.013	0.789	10.54	20.10	1,502.00 1,502.00 1,503.40	1,498.50	1,497.00	1,499.66 1,498.03	1,500.93 1,500.14 1,498.81	1.50	4.40
CO-466	E102 E101	1.793	5.756	170.0	0.013	1.059	10.40	23.28	1,503.40 1,503.40 1,500.00	1,497.00	1,495.20	1,498.16 1,496.14	1,498.63 1,497.16	4.40	2.80
CO-467	E101 E101 E100	1.793	5.697	16.0	0.013	1.250	10.30	25.29	1,500.00 1,500.00 1,498.00	1,495.20	1,495.00	1,496.35 1,495.97	1,496.82	2.80	1.00
CO-468	C105a C105	0.175	6.463	79.0	0.013	1.203	1.14	7.08	1,510.70	1,506.70	1,505.75	1,507.12 1,506.09	(N/A) 1,507.27 1,506.27	2.75	4.50
CO-469	C103 C107a C107	0.040	6.500	24.0	0.013	1.042	0.26	6.59	1,511.50 1,521.50	1,518.50	1,518.25	1,518.70 1,518.42	1,518.77	1.75	2.00
CO-470	B702 B701	0.483	6.500	73.0	0.013	1.781	3.17	14.02	1,521.50 1,450.80	1,448.80	1,447.50	1,449.48	1,517.13 1,449.74	0.50	2.00
CO-471	B701	0.483	6.453	59.0	0.013	0.847	3.14	9.67	1,451.00 1,451.00	1,447.50	1,447.00	1,447.98 1,448.17	1,448.81 1,448.43	2.00	0.50
CO-472	B700 X402	0.196	6.500	32.0	0.013	0.781	1.28	5.71	1,449.00 1,450.50	1,447.50	1,447.25	1,447.59 1,447.95	(N/A) 1,448.11	1.75	2.00
CO-473	X401 A112	1.315	6.141	82.0	0.013	0.976	8.14	10.37	1,450.50 1,458.20	1,450.80	1,450.00	1,447.65 1,451.91	1,447.82 1,452.43	5.90	3.80
CO-474	A111 C201	0.614	6.257	189.0	0.013	2.275	3.87	15.84	1,455.30 1,520.80	1,512.80	1,508.50	1,451.00 1,513.55	1,446.60 1,513.85	6.50	2.50
CO-475	C104 E402	0.317	6.500	182.0	0.013	2.637	2.08	10.49	1,512.50 1,635.30	1,631.30	1,626.50	1,509.01 1,631.87	1,506.40 1,632.10	2.75	2.75
CO-476	E401 E301	0.427	6.500	138.0	0.013	0.725	2.80	5.50	1,630.50 1,628.20	1,621.00	1,620.00	1,626.88 1,621.67	1,622.84 1,621.94	5.95	0.75
CO-477	E300 A202	0.364	6.500	88.0	0.013	2.500	2.39	10.21	1,622.00 1,631.70	1,626.70	1,624.50	1,620.63 1,627.32	(N/A) 1,627.56	3.75	2.75
CO-478	A201 A201	0.565	6.446	134.0	0.013	1.866	3.67	8.82	1,628.50 1,628.50	1,622.50	1,620.00	1,624.91 1,623.27	1,623.99 1,623.60	4.75	0.75
CO-479	A200 C305	0.442	6.433	87.0	0.013	1.149	2.87	6.93	1,622.00 1,628.50	1,619.00	1,618.00	1,620.56 1,619.68	(N/A) 1,619.95	8.25	2.95
CO-481	C304 A502	0.162	6.500	66.0	0.013	2.652	1.06	10.52	1,622.20 1,625.50	1,622.50	1,620.75	1,618.56 1,622.91	1,613.76 1,623.05	1.75	6.50

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

5/10/2016

Project Engineer: Bentley StormCAD V8i (SELECTseries 3) [08.11.03.83] Page 5 of 10

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Full Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
	A501	l l							1,628.50			1,621.02	1,621.62		
CO-482	A501	0.162	6.450	89.0	0.013	0.843	1.05	5,93	1,628.50	1,620.75	1,620.00	1,621.15	1,621.30	6.50	0.75
102	A500	0.102	0.150	05.0	0.015	0.013	1.05	3.55	1,622.00	1,0201/3	1,020.00	1,620.36	(N/A)	0.50	0.75
CO-483	A602	0.400	6.500	77.0	0.013	0.714	2.62	5.46	1,618.50	1,615.25	1,614.70	1,615.90	1,616.16	2.00	4.55
	A601	31.00	0.000	7716	0.020	01, 2		51.15	1,620.50	2,020.20	=, == ·	1,615.31	1,615.65		
CO-484	A601	0.400	6.427	104.0	0.013	0.673	2.59	5.30	1,620.50	1,614.70	1,614.00	1,615.35	1,615.60	4.55	2.75
	A600								1,618.00	,	,	1,614.62	(N/A)		
CO-487	B502	0.390	6.500	84.0	0.013	2.024	2.56	14.94	1,439.80	1,435.80	1,434.10	1,436.41	1,436.63	2.50	4.20
	B501								1,439.80			1,434.52	1,431.02		
CO-489	E502	0.172	6.500	91.0	0.013	0.769	1.13	5.67	1,638.70	1,633.70	1,633.00	1,634.12	1,634.27	3.75	3.75
	E501								1,638.00			1,633.38	1,633.62		
CO-490	E501	0.172	6.395	88.0	0.013	4.545	1.11	13.77	1,638.00	1,633.00	1,629.00	1,633.41	1,633.57	3.75	0.75
	E500								1,631.00			1,629.24	(N/A)		
CO-491	A304	0.269	6.500	152.0	0.013	0.987	1.77	6.42	1,633.70	1,629.70	1,628.20	1,630.23	1,630.43	2.75	5.35
	A303								1,634.80			1,628.81	1,628.95		
CO-492	A303	0.363	6.358	109.0	0.013	1.009	2.33	6 . 49	1,634.80	1,628.20	1,627.10	1,628.81	1,629.05	5.35	5.65
00.400	A302	4 005	F 025	200.0	0.043	4 005	20.46	44 50	1,634.00	4 544 00	4 540 75	1,627.62	1,625.03	7.50	2.25
CO-493	C114	4.925	5.935	200.0	0.013	1.025	29.46	41.52	1,554.80	1,544.80	1,542.75	1,546.65	1,547.54	7.50	2.25
60 404	C113	0.222	C F00	151.0	0.013	1 (5)	2.10	0.21	1,547.50	1 (20 00	1 626 50	1,544.30	1,539.51	2.75	2.75
CO-494	C405 C404	0.333	6.500	151.0	0.013	1.656	2.18	8.31	1,633.00	1,629.00	1,626.50	1,629.59	1,629.82 1,625.86	2.75	2.75
CO-495	C404 C404	0.686	6.390	154.0	0.013	1.299	4.42	7,36	1,630.50 1,630.50	1,624.50	1,622.50	1,626.94 1,625.35	1,625.73	4.75	2.75
CO-493	C404 C403	0.000	0.590	134.0	0.013	1.233	7.72	7.30	1,626.50	1,024.30	1,022.30	1,623.20	1,618.00	٦./٥	2.73
CO-496	C403	0.837	6.287	131.0	0.013	2.290	5.31	15,90	1,626.50	1,616.50	1,613.50	1,617.39	1,617.76	8.50	2.00
100 150	C402	0.037	0,207	131,0	0.015	2,230	5.51	13.50	1,617.00	1,010.50	1,015.50	1,614.10	1,615.01	0.50	2.00
CO-497	C402	1.684	6.186	123.0	0.013	1.220	10.50	11.60	1,617.00	1,613.00	1,611.50	1,614.25	1,614.94	2.50	8.00
	C401				0.020				1,621.00	2,020.00	_,	1,612.62	1,613.01		5.55
CO-498	C401	1.684	6.117	90.0	0.013	0.556	10.38	16.86	1,621.00	1,611.00	1,610.50	1,612.15	1,612.63	8.00	2.00
	C400								1,614.50	,	,	1,611.63	, (N/A)		
CO-499	C503	0.246	6.500	179.0	0.013	1.620	1.61	8.22	1,632.20	1,628.20	1,625.30	1,628.70	1,628.89	2.75	2.75
	C502								1,629.30			1,625.68	1,620.47		
CO-500	C502	0.536	6.357	220.0	0.013	1.977	3.43	9.08	1,629.30	1,619.30	1,614.95	1,620.05	1,620.36	8.75	2.00
	C501								1,618.20			1,615.48	1,616.21		
CO-501	C501	0.655	6.224	64.0	0.013	1.875	4.11	14.38	1,618.20	1,614.70	1,613.50	1,615.48	1,615.78	2.00	2.00
	C402								1,617.00			1,614.05	1,615.01		
CO-504	E605	0.152	6.500	85.0	0.013	1.176	1.00	7.01	1,635.50	1,631.50	1,630.50	1,631.89	1,632.04	2.75	7.75
	E604								1,639.50			1,630.82	1,631.14		
CO-505	E604	0.152	6.412	64.0	0.013	2.734	0.99	10.68	1,639.50	1,630.50	1,628.75	1,630.89	1,631.03	7.75	1.50
	E603					0.00:		40.55	1,631.50	4 606 15		1,629.01	1,629.45		
CO-506	A402	0.207	6.338	61.0	0.013	8.361	1.32	18.68	1,633.50	1,629.40	1,624.30	1,629.85	1,630.02	2.85	8.75
60 507	A401	0.207	6.000	450.0	0.040	2 756	4 04	10.70	1,634.30	4 604 00	4 620 00	1,624.53	1,625.95	0.75	0.75
CO-507	A401	0.207	6.309	156.0	0.013	2.756	1.31	10.72	1,634.30	1,624.30	1,620.00	1,624.75	1,624.92	8.75	0.75
	A400	ı l		l	l l				1,622.00			1,620.30	(N/A)		

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Full Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
CO-508	X401 X400	0.392	6.464	44.0	0.013	1.023	2.55	10.62	1,450.50 1,452.00	1,447.00	1,446.55	1,447.61 1,447.05	1,447.83	2.00	3.95
CO-509	C306 C305	0.269	6.475	56.0	0.013	1.786	1.76	8.63	1,629.50 1,628.50	1,625.50	1,624.50	1,626.03 1,624.88	(N/A) 1,626.23 1,620.15	2.75	2.75
CO-510	D103 D102	0.000	7.550	79.0	0.013	1.013	16.44	22.76	1,515.00 1,512.00	1,505.30	1,504.50	1,506.76 1,505.76	1,507.46 1,506.42	7.70	5.50
CO-512	E121 E120	1.793	6.126	100.0	0.013	2.000	11.07	14.85	1,625.00 1,617.00	1,615.00	1,613.00	1,616.27 1,613.97	1,617.02 1,610.09	8.50	2.50
CO-513	E120 E119	1.793	6.080	101.0	0.013	1.485	10.99	12.80	1,617.00 1,617.00 1,612.00	1,607.50	1,606.00	1,608.77 1,607.07	1,609.51 1,604.30	8.00	4.50
CO-519	E109 E108	1.793	5.906	25.0	0.013	2.000	10.67	14.85	1,546.00 1,539.00	1,536.00	1,535.50	1,537.25 1,536.51	1,537.97 1,531.36	8.50	2.00
CO-520	E112 E111	1.793	5.926	20.0	0.013	2.000	10.71	14.85	1,566.00 1,560.00	1,556.00	1,555.60	1,557.26 1,556.63	1,557.97 1,551.32	8.50	2.90
CO-523	E106 E105	1.793	5.875	38.0	0.013	1.316	10.62	12.05	1,524.00 1,517.00	1,514.00	1,513.50	1,515.25 1,514.61	1,515.96 1,509.14	8.50	2.00
CO-524	C121 C120	3.603	6.061	61.0	0.013	1.639	22.01	28.96	1,592.00 1,586.00	1,583.00	1,582.00	1,584.68 1,583.35	1,585.63 1,579.15	7.00	2.00
CO-525	C120 C119	3.603	6.036	65.0	0.013	1.538	21.92	28.06	1,586.00 1,579.00	1,576.00	1,575.00	1,577.67 1,576.37	1,578.62 1,571.16	8.00	2.00
CO-526	C119 C118	3.997	6.008	54.0	0.013	1.667	24.21	29.20	1,579.00 1,572.10	1,569.00	1,568.10	1,570.74 1,569.54	1,571.82 1,565.88	8.00	2.00
CO-527	C118 C117	3.997	5.992	54.0	0.013	1.667	24.14	29.20	1,572.10 1,565.70	1,562.60	1,561.70	1,564.34 1,563.14	1,565.42 1,558.37	7.50	2.00
CO-528	E111 E110	1.793	5.921	28.0	0.013	1.786	10.70	14.04	1,560.00 1,552.00	1,549.00	1,548.50	1,550.26 1,549.53	1,550.97 1,544.31	9.50	2.00
CO-529	E110 E109	1.793	5.913	25.0	0.013	2.000	10.69	14.85	1,552.00 1,546.00	1,542.00	1,541.50	1,543.25 1,542.51	1,543.97 1,538.36	8.50	3.00
CO-530	E108 E107	1.793	5.899	30.0	0.013	2.000	10.66	14.85	1,539.00 1,532.00	1,529.00	1,528.40	1,530.25 1,529.40	1,530.96 1,524.38	8.50	2.10
CO-531	E107 E106	1.793	5.891	63.0	0.013	2.381	10.65	16.21	1,532.00 1,524.00	1,522.00	1,520.50	1,523.25 1,521.41	1,523.96 1,516.65	8.50	2.00
CO-532	X201 X200	3.533	6.500	331.0	0.013	2.719	23.15	37.30	1,460.00 1,450.00	1,456.00	1,447.00	1,457.71 1,448.14	1,458.73 (N/A)	2.00	1.00
CO-533	A105 A104	2.082	5.877	18.0	0.013	1.944	12.34	57.19	1,427.50 1,421.50	1,417.50	1,417.15	1,418.68 1,418.06	1,419.14 1,413.60	7.50	1.85
CO-535	A104 A103	2.082	5.872	17.0	0.013	2.059	12.33	58.85	1,421.50 1,416.00	1,411.50	1,411.15	1,412.68 1,412.05	1,413.13 1,408.11	7.50	2.35
CO-538	A101 A100	2.082	5.849		0.013	1.852	12.28	55.81	1,396.50 1,390.00	1,386.50	1,386.00	1,387.68 1,386.88	1,388.13 (N/A)	7.50	1.50
CO-540	A106 A105	2.082	5.891	48.0	0.013	1.667	12.36	52.95	1,433.30 1,427.50	1,423.30	1,422.50	1,424.48 1,423.36	1,424.94 1,419.74	7.50	2.50
CO-545	B106	3.010	5.711	15.0	0.013	1.000	17.33	22.62	1,415.00	1,408.50	1,408.35	1,410.00	1,410.73	4.50	2.15

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

5/10/2016

Project Engineer: Bentley StormCAD V8i (SELECTseries 3) [08.11.03.83] Page 7 of 10

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Full Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
	B105								1,412.50			1,409.72	1,407.38		
CO-546	B105	3.010	5.706	15.0	0.013	1.000	17.31	22.62	1,412.50	1,405.00	1,404.85	1,406.50	1,407.23	5.50	2.15
	B104								1,409.00	,	·	1,406.22	1,401.38		
CO-548	B100a	3.010	5.618	61.0	0.013	1.639	17.05	28.96	1,382.00	1,378.00	1,377.00	1,379.49	1,380.21	2.00	2.00
	B100								1,381.00			1,378.14	(N/A)		
CO-549	A302	0.430	6.264	58.0	0.013	2.931	2.71	11.06	1,634.00	1,624.00	1,622.30	1,624.66	1,624.92	8.75	10.75
	A301								1,634.30			1,622.72	1,623.82		
CO-550	A301	0.430	6.232	99.0	0.013	2.323	2.70	9.85	1,634.30	1,622.30	1,620.00	1,622.96	1,623.22	10.75	0.75
	A300								1,622.00			1,620.45	(N/A)		
CO-551	B114	0.752	5.880	92.0	0.013	3.152	4.46	40.16	1,461.10	1,450.80	1,447.90	1,451.54	1,451.82	8.30	2.00
	B113								1,451.90			1,448.35	1,443.74		
CO-554	B401	4.330	6.270	25.0	0.013	2.000	27.37	58.00	1,421.20	1,416.50	1,416.00	1,418.28	1,419.11	2.20	0.50
	B400								1,419.00			1,417.40	(N/A)		
CO-555	E119	1.793	6.029	98.0	0.013	1.531	10.90	13.00	1,612.00	1,602.00	1,600.50	1,603.27	1,603.99	8.50	6.00
	E118	4 700	F 000	75.0	0.040	2 222	40.00	44.05	1,608.00	4 500 00	4 506 50	1,601.55	1,600.32	0.50	2.00
CO-557	E118	1.793	5.988	75.0	0.013	2.000	10.82	14.85	1,608.00	1,598.00	1,596.50	1,599.26	1,599.98	8.50	2.00
60 550	E117	4 702	F 067	F0 0	0.013	2.000	10.70	14.05	1,600.00	1 500 00	1 500 00	1,597.46	1,592.53	0.50	2.00
CO-559	E117	1.793	5.967	50.0	0.013	2.000	10.79	14.85	1,600.00	1,590.00	1,589.00	1,591.26	1,591.98	8.50	2.00
CO E61	E116	1 702	F 0F2	25.0	0.013	2 000	10.76	14.05	1,592.50	1 502 50	1 502 00	1,589.98	1,584.97	0.50	2.00
CO-561	E116 E115	1.793	5.953	25.0	0.013	2.000	10.76	14.85	1,592.50 1,585.50	1,582.50	1,582.00	1,583.76 1,583.02	1,584.48 1,577.87	8.50	2.00
CO-563	E115	1.793	5.947	25.0	0.013	2.000	10.75	14.85	1,585.50	1,575.50	1,575.00	1,576.76	1,577.47	8.50	2.00
100-303	E114	1./93	J.5 1 /	23.0	0.013	2.000	10.73	14.03	1,578.50	1,3/3.30	1,3/3.00	1,576.02	1,570.86	0.50	2.00
CO-565	E114	1.793	5,940	25.0	0.013	2.000	10.74	14,85	1,578.50	1,568.50	1,568.00	1,569.76	1,570.47	8.50	2.00
100 303	E113	1,755	313 10	25.0	0.015	2,000	10.71	11.05	1,570.50	1,500.50	1,500.00	1,569.02	1,564.36	0.50	2.00
CO-566	E113	1.793	5.933	25.0	0.013	2.000	10.72	14.85	1,571.50	1,562.00	1,561.50	1,563.26	1,563.97	8.00	3.00
100 300	E112	11,55	31333	2510	0.013	21000	10172	11103	1,566.00	1,302100	1,501150	1,562.51	1,558.36	0.00	3100
CO-567	D102	0.000	7.550	22.0	0.013	2.273	16.44	34.10	1,512.00	1,504.00	1,503.50	1,505.46	1,506.16	6.00	2.00
	D101	0.000	7.000		0.020	2,270		020	1,507.50	2,5555	2,000.00	1,504.62	1,500.24	3.33	2.00
CO-568	D101	0.000	7.550	22.0	0.013	2.273	16.44	34.10	1,507.50	1,497.50	1,497.00	1,498.96	1,499.66	8.00	2.00
	D100								1,501.00	,	,	1,498.12	, (N/A)		
CO-569	D104	0.000	7.550	14.0	0.013	1.429	8.78	12.55	1,515.20	1,511.20	1,511.00	1,512.35	1,512.92	2.50	2.50
	D103								1,515.00		·	1,511.99	1,507.54		
CO-570	A108	2.082	5.944	102.0	0.013	0.784	12.48	36.32	1,440.30	1,430.30	1,429.50	1,431.49	1,431.95	7.50	1.50
	A107								1,433.50			1,430.51	1,429.38		
CO-571	A107	2.082	5.906	45.0	0.013	1.000	12.40	41.01	1,433.50	1,427.50	1,427.05	1,428.68	1,429.14	3.50	3.75
	A106								1,433.30			1,428.02	1,425.25		
CO-574	A115	1.215	6.309	87.0	0.013	2.299	7.72	15.93	1,481.00	1,473.00	1,471.00	1,474.08	1,474.58	6.50	2.50
	A114								1,475.00			1,471.74	1,469.32		
CO-575	A114	1.215	6.269	94.0	0.013	2.660	7.67	17.13	1,475.00	1,467.00	1,464.50	1,468.07	1,468.57	6.50	2.00
	A113								1,468.00			1,465.20	1,460.47		
CO-576	B501	0.390	6.445	48.0	0.013	2.708	2.53	17.29	1,439.80	1,429.80	1,428.50	1,430.40	1,430.63	8.50	4.50
	MH-116								1,434.50			1,428.89	1,428.86		

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Fu ll Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
CO-578	MH-116 MH-117	0.390	6.416	25.0	0.013	2.000	2.52	14.85	1,434.50 1,430.50	1,427.50	1,427.00	1,428.10 1,427.43	1,428.33 1,421.66	5.50	2.00
CO-580	MH-117 MH-118	0.390	6.399	33.0	0.013	1.515	2.52	12.93	1,430.50 1,423.50	1,420.50	1,420.00	1,421.10 1,420.45	1,421.33 1,414.58	8.50	2.00
CO-581	MH-118 B500	0.390	6.375	26.0	0.013	1.923	2.51	14.57	1,423.50 1,416.50	1,413.50	1,413.00	1,414.10 1,413.43	1,414.32 (N/A)	8.50	2.00
CO-585	B100b B100a	3.010	5.630	49.0	0.013	2.041	17.08	32.32	1,387.00 1,382.00	1,379.00	1,378.00	1,380.49 1,379.10	1,381.21 1,380.94	6.00	2.00
CO-586	B104 B103	3.010	5.701	73.0	0.013	2.055	17.30	32.43	1,409.00 1,401.50	1,399.00	1,397.50	1,400.50 1,398.57	1,401.23 1,394.57	8.00	2.00
CO-588	B108 B107	3.010	5.736	44.0	0.013	4.545	17.41	48.23	1,424.00 1,417.00	1,414.00	1,412.00	1,415.50 1,412.92	1,416.24 1,415.86	8.00	3.00
CO-589	B107 B106	3.010	5.729	67.0	0.013	1.493	17.38	27.64	1,417.00 1,415.00	1,412.00	1,411.00	1,413.50 1,412.18	1,414.24 1,411.26	3.00	2.00
CO-590	B113 B112	0.752	5.853	54.0	0.013	2.593	4.43	36.42	1,451.90 1,444.50	1,441.90	1,440.50	1,442.64 1,440.97	1,442.91 1,436.18	8.00	2.00
CO-591	B112 B111	0.752	5.835	31.0	0.013	3,226	4.42	40.63	1,444.50 1,437.50	1,434.50	1,433.50	1,435.24 1,433.97	1,435.51 1,433.71	8.00	2.00
CO-592	B120 B119	0.087	6.500	56.0	0.013	0.893	0.57	6.10	1,472.50 1,472.50	1,469.25	1,468.75	1,469.54 1,469.16	1,469.65 1,469.20	2.00	2.50
CO-593	B119 B118	0.159	6.425	135.0	0.013	0.481	1.03	4.48	1,472.50 1,474.50	1,468.75	1,468.10	1,469.16 1,468.52	1,469.29 1,468.65	2.50	5.15
CO-594	B208 B207	0.071	6.500	71.0	0.013	1.056	0.46	6.64	1,465.50 1,463.50	1,461.00	1,460.25	1,461.26 1,460.47	1,461.36 1,459.09	3.25	2.00
CO-595	B207 B206	0.189	6.405	178.0	0.013	5.000	1.22	14.44	1,463.50 1,453.10	1,458.50	1,449.60	1,458.94 1,450.08	1,459.10 1,450.20	3.75	2.25
CO-596	C102 C101	6.926	5.670	16.0	0.013	1.250	39.58	45.86	1,502.20 1,496.50	1,492.20	1,492.00	1,494.32 1,493.94	1,495.56 1,490.08	7.50	2.00
CO-597	C101 C100	6.926	5.666	33.0	0.013	1.515	39.56	50.49	1,496.50 1,490.00	1,486.50	1,486.00	1,488.62 1,487.81	1,489.85 (N/A)	7.50	1.50
CO-598	C104 C103	6.926	5.698	61.0	0.013	1.148	39.78	43.94	1,512.50 1,508.00	1,502.50	1,501.80	1,504.62 1,503.70	1,505.87 1,501.66	7.50	3.70
CO-599	C103 C102	6.926	5.683	54.0	0.013	1.111	39.68	43.23	1,508.00 1,502.20	1,498.00	1,497.40	1,500.12 1,499.32	1,501.36 1,495.81	7.50	2.30
CO-600	C109 C108	5.315	5.799	99.0	0.013	1.010	31.07	41.22	1,532.00 1,525.50	1,522.00	1,521.00	1,523.90 1,522.63	1,524.84 1,520.70	7.50	2.00
CO-601	C108 C107	5.315	5.772	53.0	0.013	0.943	30.93	39.84	1,525.50 1,521.50	1,517.50	1,517.00	1,519.40 1,518.68	1,520.33 1,517.13	5.50	2.00
CO-602	B408 B407	2.444	6.500	165.0	0.013	0.970	16.01	22.28	1,430.20 1,432.00	1,426.20	1,424.60	1,427.64 1,425.86	1,428.32 1,426.96	2.00	5.40
CO-603	B407 B406	2.444	6.411	28.0	0.013	1.071	15.79	23.42	1,432.00 1,430.20	1,424.60	1,424.30	1,426.03 1,426.13	1,426.70 1,426.55	5.40	3.90
CO-604	B406	4.330	6.396	50.0	0.013	1.600	27.92	28.61	1,430.20	1,424.30	1,423.50	1,426.13	1,427.46	3.90	7.80

Title: GAN-EDEN-STM

P:\01895\029\C\Calcs\hydrology\stormcad\GanEden_stormcad14.stsw

Label	-Node- Upstream Downstream	System CA (acres)	System Intensity (in/h)	Length (Unified) (ft)	Manning's n	Slope (%)	Flow (ft³/s)	Capacity (Full Flow) (ft³/s)	-Ground- Upstream Downstream (ft)	Invert Upstream (ft)	Invert Downstream (ft)	-HGL- Upstream Downstream (ft)	-EGL- Upstream Downstream (ft)	Cover (Start) (ft)	Cover (Stop) (ft)
CO-605	B405 B405 B404	4.330	6.376	35.0	0.013	1.857	27.83	30.83	1,433.30 1,433.30 1,433.90	1,423.50	1,422.85	1,425.14 1,425.33 1,424.43	1,426.92 1,426.66 1,426.00	7.80	9.05
CO-606	B403 B402	4.330	6.313	45.0	0.013	1.000	27.55	41.01	1,432.50 1,427.00	1,421.95	1,421.50	1,423.74 1,423.05	1,424.57 1,419.94	8.05	3.00
CO-607	B402 B401	4.330	6.292	41.0	0.013	0.732	27.46	35.08	1,427.00 1,421.20	1,417.00	1,416.70	1,418.79 1,418.37	1,419.62 1,419.24	7.50	2.00
CO-608	E-OS E-HW	0.000	7.550	172.0	0.013	0.581	1.05	8.01	1,500.00 1,496.13	1,491.00	1,490.00	1,491.38 1,490.37	1,491.52 (N/A)	7.50	4.63
CO-609	D-OS D-HW	0.000	7.550	85.0	0.013	1.176	8.66	11.39	1,498.00 1,496.13	1,491.00	1,490.00	1,492.14 1,490.98	1,492.70 (N/A)	5.50	4.63
CO-610	A-OS A-HW	0.000	7.550	129.0	0.013	0.775	5.14	9.25	1,390.00 1,387.00	1,381.00	1,380.00	1,381.87 1,380.80	1,382.23 (N/A)	7. 50	5.50
CO-611	B-OS B-HW	0.000	7.550	65.0	0.013	1.538	3.87	13.03	1,380.00 1,376.00	1,371.00	1,370.00	1,371.75 1,370.56	1,372.05 (N/A)	7.50	4.50
CO-612	C-OS Cc-MH	0.000	7.550	40.0	0.013	0.750	17.68	19.59	1,490.00 1,387.00	1,380.00	1,379.70	1,381.52 1,381.27	1,382.26 1,381.96	108.00	5.30
CO-613	Cc-MH Cb-MH	0.000	7.550	121.0	0.013	0.661	17.68	18.39	1,387.00 1,384.85	1,379.70	1,378.90	1,381.27 1,380.45	1,381.96 1,381.16	5.30	3.95
CO-614	Cb-MH Ca-MH	0.000	7.550	204.0	0.013	0.686	17.68	18.74	1,384.85 1,382.75	1,378.90	1,377.50	1,380.45 1,379.03	1,381.16 1,379.76	3.95	3.25
CO-615	Ca-MH C-HW	0.000	7.550	71.0	0.013	0.704	17.68	18.98	1,382.75 1,382.00	1,377.50	1,377.00	1,379.03 1,378.52	1,379.76 (N/A)	3.25	3.00
CO-617	B101 B100b	3.010	5.635	20.0	0.013	2.000	17.10	31.99	1,389.50 1,387.00	1,383.40	1,383.00	1,384.89 1,384.19	1,385.61 1,381.70	4.10	2.00
CO-618	B103 B102	3.010	5.684	173.0	0.013	2.023	17.25	32.18	1,401.50 1,392.00	1,391.50	1,388.00	1,393.00 1,389.04	1,393.72 1,389.18	8.00	2.00
CO-619	B102 B101	3.010	5.642	30.0	0.013	2.000	17.12	31.99	1,392.00 1,389.50	1,386.00	1,385.40	1,387.49 1,386.55	1,388.21 1,386.20	4.00	2.10
CO-620	A103 A102	2.082	5.868	15.0	0.013	2.000	12.32	58.00	1,416.00 1,410.20	1,406.00	1,405.70	1,407.18 1,406.61	1,407.63 1,402.27	7.50	2.00
CO-621	A102 A101b	2.082	5.864	11.0	0.013	1.818	12.31	55.30	1,410.20 1,404.50	1,400.20	1,400.00	1,401.38 1,400.95	1,401.83 1,396.47	7.50	2.00
CO-622	A101b A101a	2.082	5.861	25.0	0.013	2.000	12.30	58.00	1,404.50 1,399.00	1,394.50	1,394.00	1,395.68 1,394.87	1,396.13 1,394.59	7.50	2.50
CO-623	A101a A101	2.082	5.854	20.0	0.013	2.000	12.29	58.00	1,399.00 1,396.50	1,392.40	1,392.00	1,393.58 1,392.89	1,394.03 1,388.63	4.10	2.00

APPENDIX J

STORMWATER BASIN SPILLWAY CALCULATIONS

EMERGENCY SPILLWAY CALCULATION SHEET

 $L = Q / (C*H^{1.5})$

L: Weir Length

C: coefficient, C=3.33 for rectangular weir

H: differential of top of berm (H₁) and weir crest(H₂)

SWM Facility	100 Yr. Water Surface	100 Yr. INFLOW Q (cfs)	Top of Berm (H ₁₎	Spillway Crest (H ₂₎	Free Board (ft.)	Cal.Weir length L (ft.)	Design Weir length (ft.)
Basin A	1389.11	21.54	1390.00	1389.11	0.89	7.70	10
Basin B	1378.99	27.71	1380.00	1378.99	1.01	8.20	10
Basin C	1489.18	40.18	1490.00	1489.18	0.82	16.25	20
Basin D	1498.89	11.84	1500.00	1498.89	1.11	3.04	10
Basin E	1498.65	28.05	1500.00	1498.65	1.35	5.37	10

APPENDIX J

APPENDIX K

SOIL EROSION AND SEDIMENT CONTROL CONDUIT OUTLET PROTECTION

OUTLET PROTECTION DESIGN (GAN-EDEN)

Structure Symbol	Structure Type	Q (cfs)	Pipe Diam. Do (in.)	Tailwater (ft.)	d 50 (in.)	d _{max} (in.)	Apron Lengh La (ft.)	Apron Width W (ft.)*	Blanket Thickness (In.)	NYS-ESC Reference
A-HW	Conc. Headwall	1.09	18	0.00	6	9	9	11	14	Fig. 5B12
A100-HW	Conc. Headwall	12.38	30	1.25	6	9	10	7	14	Fig. 5B13
A200-HW	Conc. Headwall	6.32	15	0.50	6	9	8	9	14	Fig. 5B12
A300-HW	Conc. Headwall	2.67	15	0.50	6	9	8	9	14	Fig. 5B12
A400-HW	Conc. Headwall	1.28	15	0.50	6	9	8	9	14	Fig. 5B12
A500-HW	Conc. Headwall	1.03	15	0.50	6	9	8	9	14	Fig. 5B12
A600-HW	Conc. Headwall	2.56	15	0.50	6	9	8	9	14	Fig. 5B12
B-HW	Conc. Headwall	0.94	18	0.00	6	9	9	11	14	Fig. 5B12
B100-HW	Conc. Headwall	17.85	24	1.00	8	12	10	5	17	Fig. 5B13
B400-HW	Conc. Headwall	27.51	24	0.75	6	9	16	18	14	Fig. 5B12
B500-HW	Conc. Headwall	2.51	18	0.50	6	9	9	11	14	Fig. 5B12
B600-HW	Conc. Headwall	1.77	18	0.50	6	9	9	11	14	Fig. 5B12
B700-HW	Conc. Headwall	3.11	18	0.50	6	9	9	11	14	Fig. 5B12
C-HW	Conc. Headwall	15.35	18	0.50	6	9	9	11	14	Fig. 5B12
C100-HW	Conc. Headwall	39.55	30	1.50	6	9	18	10	14	Fig. 5B13
C400-HW	Conc. Headwall	10.25	24	0.75	6	9	12	14	14	Fig. 5B12
										-
D-HW	Conc. Headwall	4.61	18	0.50	6	9	9	11	14	Fig. 5B12
D100-HW	Conc. Headwall	17.31	24	1.00	6	9	9	6	14	Fig. 5B13
										- -
E-HW	Conc. Headwall	0.38	18	0.00	6	9	9	11	14	Fig. 5B12
E100-HW	Conc. Headwall	10.31	24	1.00	6	9	8	5	14	Fig. 5B13
E300-HW	Conc. Headwall	2.76	15	0.50	6	9	8	9	14	Fig. 5B12
E400-HW	Conc. Headwall	4.38	18	0.50	6	9	9	11	14	Fig. 5B12
E500-HW	Conc. Headwall	1.10	15	0.50	6	9	8	9	14	Fig. 5B12
E600-HW	Conc. Headwall	3.75	18	0.50	6	9	9	11	14	Fig. 5B12

APPENDIX-K

^{*}Apron Width W=La+D0 (Fig. 5b12, Minimum Tailwater Condition, Tw<0.5Do)

**Apron Width: W=0.4XLa+D0 (Fig. 5b13-Maximum Tailwater Condition), Tw>=0.5Do)

APPENDIX L

CONSTRUCTION SITE STORMWATER LOGBOOK

APPENDIX H

STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM FOR CONSTRUCTION ACTIVITIES CONSTRUCTION SITE LOG BOOK

Table of Contents

- I. Pre-Construction Meeting Documents
 - a. Preamble to Site Assessment and Inspections
 - b. Operator's Certification
 - c. Qualified Professional's Credentials & Certification
 - d. Pre-Construction Site Assessment Checklist
- II. Construction Duration Inspections
 - a. Directions
 - b. Modification to the SWPPP
- III. Monthly Summary Reports
- IV. Monitoring, Reporting, and Three-Month Status Reports
 - a. Operator's Compliance Response Form

Properly completing forms such as those contained in Appendix H meet the inspection requirement of NYS-DEC SPDES GP for Construction Activities. Completed forms shall be kept on site at all times and made available to authorities upon request.

Project Name Permit No. ______ Date of Authorization Name of Operator ______ Prime Contractor

a. Preamble to Site Assessment and Inspections

I. PRE-CONSTRUCTION MEETING DOCUMENTS

The Following Information To Be Read By All Person's Involved in The Construction of Stormwater Related Activities:

The Operator agrees to have a qualified professional¹ conduct an assessment of the site prior to the commencement of construction² and certify in this inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction.

Prior to the commencement of construction, the Operator shall certify in this site logbook that the SWPPP has been prepared in accordance with the State's standards and meets all Federal, State and local erosion and sediment control requirements.

When construction starts, site inspections shall be conducted by the qualified professional at least every 7 calendar days and within 24 hours of the end of a storm event of 0.5 inches or greater (Construction Duration Inspections). The Operator shall maintain a record of all inspection reports in this site logbook. The site logbook shall be maintained on site and be made available to the permitting authorities upon request. The Operator shall post at the site, in a publicly accessible location, a summary of the site inspection activities on a monthly basis (Monthly Summary Report).

The operator shall also prepare a written summary of compliance with this general permit at a minimum frequency of every three months (Operator's Compliance Response Form), while coverage exists. The summary should address the status of achieving each component of the SWPPP.

Prior to filing the Notice of Termination or the end of permit term, the Operator shall have a qualified professional perform a final site inspection. The qualified professional shall certify that the site has undergone final stabilization³ using either vegetative or structural stabilization methods and that all temporary erosion and sediment controls (such as silt fencing) not needed for long-term erosion control have been removed. In addition, the Operator must identify and certify that all permanent structures described in the SWPPP have been constructed and provide the owner(s) with an operation and maintenance plan that ensures the structure(s) continuously functions as designed.

^{1 &}quot;Qualified Professional means a person knowledgeable in the principles and practice of erosion and sediment controls, such as a Certified Professional in Erosion and Sediment Control (CPESC), soil scientist, licensed engineer or someone working under the direction and supervision of a licensed engineer (person must have experience in the principles and practices of erosion and sediment control).

^{2 &}quot;Commencement of construction" means the initial removal of vegetation and disturbance of soils associated with clearing, grading or excavating activities or other construction activities.

^{3 &}quot;Final stabilization" means that all soil-disturbing activities at the site have been completed and a uniform, perennial vegetative cover with a density of eighty (80) percent has been established or equivalent stabilization measures (such as the use of mulches or geotextiles) have been employed on all unpaved areas and areas not covered by permanent structures.

b. Operators Certification

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Further, I hereby certify that the SWPPP meets all Federal, State, and local erosion and sediment control requirements. I am aware that false statements made herein are punishable as a class A misdemeanor pursuant to Section 210.45 of the Penal Law.

Name (please prin	
	Date:
Address:	
	Email:
Signature:	
c. Qualified Prof	sional's Credentials & Certification
project and that the the following Pre-c	I meet the criteria set forth in the General Permit to conduct site inspections for this oppropriate erosion and sediment controls described in the SWPPP and as described instruction Site Assessment Checklist have been adequately installed or implemented reparedness of this site for the commencement of construction."
Name (please prin	·
Title	Date:
Address:	
Phone:	Email:
Signature:	

d. Pre-construction Site Assessment Checklist (NOTE: Provide comments below as necessary) 1. Notice of Intent, SWPPP, and Contractors Certification: Yes No NA [] [] Has a Notice of Intent been filed with the NYS Department of Conservation? [] [] Is the SWPPP on-site? Where? [] [] Is the Plan current? What is the latest revision date? [] [] Is a copy of the NOI (with brief description) onsite? Where? [] [] Have all contractors involved with stormwater related activities signed a contractor's certification? 2. Resource Protection Yes No NA [] [] Are construction limits clearly flagged or fenced? [] [] Important trees and associated rooting zones, on-site septic system absorption fields, existing vegetated areas suitable for filter strips, especially in perimeter areas, have been flagged for protection. [] [] Creek crossings installed prior to land-disturbing activity, including clearing and blasting. 3. Surface Water Protection Yes No NA [] [] Clean stormwater runoff has been diverted from areas to be disturbed. [] [] Bodies of water located either on site or in the vicinity of the site have been identified and protected. [] [] Appropriate practices to protect on-site or downstream surface water are installed. [] [] Are clearing and grading operations divided into areas <5 acres? 4. Stabilized Construction Entrance Yes No NA [] [] A temporary construction entrance to capture mud and debris from construction vehicles before they enter the public highway has been installed. [] [] Other access areas (entrances, construction routes, equipment parking areas) are stabilized immediately as work takes place with gravel or other cover. [] [] Sediment tracked onto public streets is removed or cleaned on a regular basis. 5. Perimeter Sediment Controls Yes No NA [] [] Silt fence material and installation comply with the standard drawing and specifications. [] [] Silt fences are installed at appropriate spacing intervals [] [] Sediment/detention basin was installed as first land disturbing activity. [] [] Sediment traps and barriers are installed.

Yes No NA

6. Pollution Prevention for Waste and Hazardous Materials

avoidance and response plan.

[] [] The plan is contained in the SWPPP on page

[] [] The Operator or designated representative has been assigned to implement the spill prevention

[] [] Appropriate materials to control spills are onsite. Where?

IL CONSTRUCTION DURATION INSPECTIONS

a. Directions:

Inspection Forms will be filled out during the entire construction phase of the project. Required Elements:

- (1) On a site map, indicate the extent of all disturbed site areas and drainage pathways. Indicate site areas that are expected to undergo initial disturbance or significant site work within the next 14-day period;
- (2) Indicate on a site map all areas of the site that have undergone temporary or permanent stabilization;
- (3) Indicate all disturbed site areas that have not undergone active site work during the previous 14-day period;
- (4) Inspect all sediment control practices and record the approximate degree of sediment accumulation as a percentage of sediment storage volume (for example, 10 percent, 20 percent, 50 percent);
- (5) Inspect all erosion and sediment control practices and record all maintenance requirements such as verifying the integrity of barrier or diversion systems (earthen berms or silt fencing) and containment systems (sediment basins and sediment traps). Identify any evidence of rill or gully erosion occurring on slopes and any loss of stabilizing vegetation or seeding/mulching. Document any excessive deposition of sediment or ponding water along barrier or diversion systems. Record the depth of sediment within containment structures, any erosion near outlet and overflow structures, and verify the ability of rock filters around perforated riser pipes to pass water; and
- (6) Immediately report to the Operator any deficiencies that are identified with the implementation of the SWPPP.

CONSTRUCTION DURATION INSPECTIONS Page 1 of _____ SITE PLAN/SKETCH **Inspector (print name) Date of Inspection** Qualified Professional (print name) Qualified Professional Signature The above signed acknowledges that, to the best of his/her knowledge, all information provided on the forms is accurate and complete.

Maintaining Water Quality

Yes No NA
[] [] Is there an increase in turbidity causing a substantial visible contrast to natural conditions? [] [] Is there residue from oil and floating substances, visible oil film, or globules or grease? [] [] All disturbance is within the limits of the approved plans. [] [] Have receiving lake/bay, stream, and/or wetland been impacted by silt from project?
Housekeeping
1. General Site Conditions
 Yes No NA [] [] Is construction site litter and debris appropriately managed? [] [] Are facilities and equipment necessary for implementation of erosion and sediment control in working order and/or properly maintained?
[] [] Is construction impacting the adjacent property? [] [] [] Is dust adequately controlled?
2. Temporary Stream Crossing
Yes No NA [] [] Maximum diameter pipes necessary to span creek without dredging are installed. [] [] Installed non-woven geotextile fabric beneath approaches. [] [] Is fill composed of aggregate (no earth or soil)? [] [] Rock on approaches is clean enough to remove mud from vehicles & prevent sediment from entering stream during high flow.
Runoff Control Practices
1. Excavation Dewatering
Yes No NA [] [] Upstream and downstream berms (sandbags, inflatable dams, etc.) are installed per plan. [] [] Clean water from upstream pool is being pumped to the downstream pool. [] [] Sediment laden water from work area is being discharged to a silt-trapping device. [] [] Constructed upstream berm with one-foot minimum freeboard.
2. Level Spreader
Yes No NA [] [] Installed per plan. [] [] Constructed on undisturbed soil, not on fill, receiving only clear, non-sediment laden flow. [] [] Flow sheets out of level spreader without erosion on downstream edge.
3. Interceptor Dikes and Swales
Yes No NA
[] [] Installed per plan with minimum side slopes 2H:1V or flatter. [] [] Stabilized by geotextile fabric, seed, or mulch with no erosion occurring. [] [] Sediment-laden runoff directed to sediment trapping structure

CONSTRUCTION DURATION INSPECTIONS

Page 3 of _____

Runoff Control Practices (continued)

4. Stone Check Dam
Yes No NA
[] [] Is channel stable? (flow is not eroding soil underneath or around the structure). [] [] Check is in good condition (rocks in place and no permanent pools behind the structure). [] [] Has accumulated sediment been removed?.
5. Rock Outlet Protection
Yes No NA
[] [] Installed per plan. [] [] Installed concurrently with pipe installation.
Soil Stabilization
1. Topsoil and Spoil Stockpiles
Yes No NA
[] [] Stockpiles are stabilized with vegetation and/or mulch. [] [] Sediment control is installed at the toe of the slope.
2. Revegetation
Yes No NA
[] [] Temporary seedings and mulch have been applied to idle areas. [] [] 4 inches minimum of topsoil has been applied under permanent seedings
Sediment Control Practices
1. Stabilized Construction Entrance
Yes No NA
[] [] Stone is clean enough to effectively remove mud from vehicles. [] [] Installed per standards and specifications?
[] [] Does all traffic use the stabilized entrance to enter and leave site?
[] [] Is adequate drainage provided to prevent ponding at entrance?
2. Silt Fence
Yes No NA
[] [] Installed on Contour, 10 feet from toe of slope (not across conveyance channels).
[] [] Joints constructed by wrapping the two ends together for continuous support. [] [] Fabric buried 6 inches minimum.
[] [] Posts are stable, fabric is tight and without rips or frayed areas.
Sediment accumulation is% of design capacity.

CONSTRUCTION DURATION INSPECTIONS

Page	4	of		

Sediment Control Practices (continued)

3. Storm Drain Inle	et Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated practices)
Yes No NA	
[] [] [] Installe	d concrete blocks lengthwise so open ends face outward, not upward.
	wire screen between No. 3 crushed stone and concrete blocks.
	ge area is lacre or less.
[] [] []Excava	ted area is 900 cubic feet.
	ted side slopes should be 2:1.
	frame is constructed and structurally sound.
[] [] [] Posts 3-	-foot maximum spacing between posts.
[] [] Fabric i	s embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-
inch sp	
	re stable, fabric is tight and without rips or frayed areas.
	ation % of design capacity.
4. Temporary Sedi	ment Trap
Yes No NA	•
[] [] Outlet s	structure is constructed per the approved plan or drawing.
	tile fabric has been placed beneath rock fill.
	ation is% of design capacity.
5. Temporary Sedi	ment Basin
Yes No NA	
	nd outlet structure constructed per the approved plan.
	ide slopes are stabilized with seed/mulch.
	ge structure flushed and basin surface restored upon removal of sediment basin facility.
	ation is% of design capacity.
Note: Not all	erosion and sediment control practices are included in this listing. Add additional pages
	list as required by site specific design.
	uction inspection checklists for post-development stormwater management practices can
	nd in Appendix F of the New York Stormwater Management Design Manual.

CONSTRUCTION DURATION INSPECTIONS

b. Modifications to the SWPPP (To be completed as described below)

The Operator shall amend the SWPPP whenever:

- 1. There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or
- 2. The SWPPP proves to be ineffective in:
 - a. Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or
 - b. Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and
- 3. Additionally, the SWPPP shall be amended to identify any new contractor or subcontractor that will implement any measure of the SWPPP. **Modification & Reason:**

III. Monthly Summary of Site Inspection Activities

Name of Permitted Facility:				ny's Date:	Reporting Mo	Reporting Month:	
Location:			Pern	on #:			
Name and Telep	hone Number of Site Inspec	etor:					
Date of Inspection	Regular / Rainfall based Inspection Name of Inspector		Inspector	Iter	ms of Concern	of Concern	
"I certify under p accordance with submitted. Based gathering the info	tor Certification: benalty of law that this docume a system designed to assure to a system designed to assure to a system designed to assure to a system designed to assure the system or mation, the information subsware that false statements materials."	hat qualified pers or persons who n omitted is, to the b	onnel properly g nanage the system to est of my knowl	athered and eva m, or those perse ledge and belief	luated the informations directly responsi t, true, accurate, and	on ble for	
_	ttee or Duly Authorized Represe I representatives <u>must</u> hav			-	zed Representative sign any permit	Date	