GROUNDWATER SUPPLY ASSESSMENT PROPOSED GAN EDEN ESTATES THOMPSON AND FALLSBURG, NEW YORK

PREPARED FOR:

PROPOSED GAN EDEN ESTATES MR. LARRY FRENKEL 38 SKY MEADOW ROAD SUFFERN, NEW YORK, 10901

PREPARED BY:

HydroEnvironmental Solutions, Inc. One Deans Bridge Road Somers, New York 10589 (914) 276-2560

February 2017

Prepared by:

his horan

Christopher J. LaFonte Geologist / Hydrogeologist

Reviewed by:

William A. Conevan

William A. Canavan, PG, LSRP President

914.276.2560 • Fax 914.276.2664 • http://www.hesny.com

TABLE OF CONTENTS

INTRODUCTION			1
BACKGROUND			1
Water Demand & Use Site Geology			
PUMPING TEST STRUCTURE			3
72-Hour Pump Tests Pumping Well Observation Wells Surface Water Mor Rainfall Monitoring Water Quality	nitoring		3 3 4 4
RESULTS OF PUMPING TEST			5
Pumping Well Observation Wells On-Site Wel Off-Site Wel Surface Water Mor Second 72-Hour Pump Te Pumping Well Observation Wells On-Site Wel Off-Site Wel	Is Is hitoring est – Oc Is Is	er 14, 2016	5 6 6 7 7 7 8 9 9
WATER QUALITY			.10
On-Site Pumping Wells Hobby Well			
DISCUSSION OF RESULTS			.11
CONCLUSIONS			.12
RECOMMENDATIONS			.13
REFERENCES			.15

TABLE OF CONTENTS (continued)

TABLES

Table 1. On-site Well Construction Details Pumping Rates

Table 2. Summary of Off-Site Water Supply Wells

Table 3. Results of Water Quality Analyses

Table 4. On-site Rain Gauge Monitoring Log

FIGURES

Figure 1. Site Location Map

Figure 2. Pumping and Observation Well Location Map

Figure 3. TW-3 Pumping Well Hydrograph: 72-Hour Pump Test - 1

Figure 4. TW-5 Pumping Well Hydrograph: 72-Hour Pump Test - 1

Figure 5. TW-8 Pumping Well Hydrograph: 72-Hour Pump Test - 1

Figure 6. TW-6 Monitoring Well Hydrograph: 72-Hour Pump Test - 1

Figure 7. TW-6 Pumping Well Hydrograph: 72-Hour Pump Test - 2

Figure 8. TW-8 Pumping Well Hydrograph: 72-Hour Pump Test - 2

Figure 9. TW-5 Monitoring Well Hydrograph: 72-Hour Pump Test - 2

Figure 10. TW-3 Monitoring Well Hydrograph: 72-Hour Pump Test - 2

Figure 11. On-Site Monitor Well: MW-1 Monitoring Well Hydrograph

Figure 12. On-Site Monitor Wells: P-1, P-2, P-3 and P-4 Monitoring Well Hydrograph

Figure 13. Off-Site Monitor Well: Betters Well Hydrograph

Figure 14. Off-Site Monitor Well: Chaussy Well Hydrograph

Figure 15. Off-Site Monitor Well: Cole Well Hydrograph

Figure 16. Off-Site Monitor Well: Dast Parrandeh Well Hydrograph

Figure 17. Off-Site Monitor Well: Gaor Well Hydrograph

Figure 18. Off-Site Monitor Well: Hobby Well Hydrograph - Pump Test 2

Figure 19. Off-Site Monitor Well: Mackney Well Hydrograph

Figure 20. Off-Site Monitor Well: Miller Well Hydrograph

Figure 21. Off-Site Monitor Well: Nestler Well Hydrograph

Figure 22. Off-Site Monitor Well: Park Slope Well - 1 Hydrograph

Figure 23. Off-Site Monitor Well: Schneider Well Hydrograph - Pump Test 2

Figure 24. Off-Site Monitor Well: Fallsburg H-1 Well Hydrograph

Figure 25. Stream Gauge Monitoring: SG-1, SG-2 and SG-3 Hydrograph

Figure 26. Pumping Rates: 72-Hour Pump Test - 1

Figure 27. Pumping Rates: 72-Hour Pump Test - 2

APPENDICES

<u>Appendix 1</u> Water Supply Assessment Report – 1989 (LBG) and Groundwater Supply Assessment Report – 2008 (HES)

<u>Appendix 2</u> On-site Pumping Wells and Observation Wells Raw Data TW-3 (Test - 1) Pumping Well Water Level Monitoring Data TW-5 (Test - 1) Pumping Well Water Level Monitoring Data

TW-6 (Test - 1) Observation Well Water Level Monitoring Data

TW-6 (Test - 2) Pumping Well Water Level Monitoring Data

TABLE OF CONTENTS (continued)

APPENDICES (continued)

TW-8 (Test - 2) Pumping Well Water Level Monitoring Data TW-5 (Test - 2) Observation Well Water Level Monitoring Data TW-3 (Test - 2) Observation Well Water Level Monitoring Data MW-1 Observation Well Water Level Monitoring Data P-1 and P-2 Observation Well Water Level Monitoring Data

- Appendix 3 Off-site Monitoring Wells Raw Data Betters Residence Well Water Level Monitoring Data Chaussy Residence Well Water Level Monitoring Data Cole Residence Well Water Level Monitoring Data Dast Parrandeh Residence Well Water Level Monitoring Data Goar Residence Well Water Level Monitoring Data Hobby Residence Well Water Level Monitoring Data Mackney Residence Well Water Level Monitoring Data Miller Residence Well Water Level Monitoring Data Nestler Residence Well Water Level Monitoring Data Park Slope Residence Well Water Level Monitoring Data Schneider Residence Well Water Level Monitoring Data Fallsburg (H-1) Municipal Well Water Level Monitoring Data
- Appendix 4 Geologic Logs: MW-1 P-1 P-2 P-3 P-4
- Appendix 5 Water Quality Sampling Results
- Appendix 6 180-Day Drawdown Analysis

INTRODUCTION

HydroEnvironmental Solutions, Inc. (HES), on behalf of Gan Eden Estates (Gan Eden), represented by Mr. Larry Frenkel, has conducted two separate 72hour pump tests on four test wells located on the proposed Gan Eden property, located in the towns of Thompson and Fallsburg, Sullivan County, New York at the intersection of County Roads 104 and 107 (**Figure 1**). The testing was conducted to determine the long-term yield and suitability for public supply usage of the proposed wells, according to the guidelines set forth by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) for municipal supply wells.

BACKGROUND

Water Demand & Use

In 1989, Leggette, Brashears & Graham, Inc. (LBG) conducted an investigation into the availability of groundwater on the proposed Gan Eden Estates property. LBG performed a simultaneous pumping test of TW-3 and TW-5 in April of 1989, determining that the sustainable yield capacity of on-site test well TW-3 is less than 15 gallons per minute (gpm) and, therefore, not recommended for development (Leggette et al., 1989). However, test well TW-5, was determined to have a capacity of 140 gpm making it a reliable well source. Following the simultaneous pumping of TW-3 and TW-5, a third test well, TW-6, was pumped individually for 72-hours at rates of 150 and 200 gpm, demonstrating that TW-6 has a sustainable yield capacity of at least 200 gpm.

In 2008, HES conducted an 8-hour step-drawdown test on TW-5 and TW-6, and a 72-hour pump test on TW-6. From these two tests, HES concluded that TW-5 has a capacity of 150 gpm and the 72-hour pump test concluded that TW-6 can maintain a long term pumping rate of 210 gpm.

A summary of on-site well construction details is included on **Table 1** and a copy of the previous water supply assessment reports are included in **Appendix 1**.

The proposed development of Gan Eden Estates will supply water to town homes and apartments. For new community water supplies, the NYSDOH guidelines require development of two independent sources, each capable of delivering double the average daily demand of the project. In effect, the guidelines require development of four times the daily demand. Therefore, based on the pump testing outlined herein, consumptive supply for the new development will be provided, as required, by water supply wells TW-3, TW-5 and TW-8, the Primary Wells, with TW-6 acting as the Backup Well.

In accordance with New York State Department of Health (NYSDOH) Standards, the total on-site water supply provided by the Primary Wells and Backup Well respectively, will each need to provide two times the average daily demand, or 204.8 gpm. Based on past pump testing conducted in 2008, TW-5 and TW-6 have a capacity of 150 gpm and 210 gpm, respectively. Additionally, test wells TW-3 and TW-8 have tested capacities of less than 15 gpm and 45 gpm, respectively. Therefore, the four wells will be pumped at a safe yield during the 72-hour pumping test that provides the required 204.8 gpm for the project. Once it is established through testing that the Primary Wells are sufficient to provide water to the project, the highest yielding well, TW-6, will be considered the Backup Well as per NYSDOH Standards. Given the current project demand, these four wells are more than sufficient.

The water demand for the project is as follows:

Unit Type	Number of Units	Number of Bedrooms	Total Number Bedrooms
Town Homes	147	3	441
Apartments	124	3	372
Apartments	264	2	528
Total Number of Bedrooms			1,341

Based on NYSDOH water demand of 110 gallons per day per bedroom, the water demand for the project will be as follows:

1,341 bedrooms x 110 gpd/bedroom = 147,510 gpd

147,510 gpd/1,440 minutes/day = 102.4 gpm

Site Geology

The proposed Gan Eden Estates property lies above the Devonian Upper Walton bedrock formation comprised of a shale sandstone conglomerate (Fisher et al., 1970). The bedrock is not exposed in the vicinity of the site and is mantled by approximately 16 feet of unconsolidated glacial till (driller's logs). According to the Surficial Geologic Map of New York, the majority of the site is covered in glacial till of variable thickness (Cadwell, 1989).

PUMPING TEST STRUCTURE

72-Hour Pump Tests

The first 72-hour pumping test was conducted on test wells TW-3, TW-5 and TW-8 from October 17 through October 20, 2016 and the second 72-hour pump test was conducted on TW-6 and TW-8 from November 5 through November 11, 2016. TW-8 was tested twice with different pump depth settings in an attempt to maximize the well's yield based on available drawdown. An on-site and off-site well monitoring program was set up to document any hydrogeologic effects of sustained pumping of the test wells TW-3, TW-5, TW-6 and TW-8 during both pump tests. **Table 2** provides a list of off-site well monitoring locations including local residences approached by HES that provided access to their water supply wells. The raw water level data collected from the on-site and off-site wells is included as **Appendix 2** and **Appendix 3**, respectively.

During the 72-hour pump tests, after at least 24 hours of pumping, groundwater quality sampling was conducted at each test well (TW-8 was sampled once during the first test) for NYSDOH Drinking Water Standards (DWS) Full Part V analyzer and Micro Particulate Analysis (MPA). The results of the groundwater quality for the four test wells are summarized on **Table 3**.

Pumping Wells

Test well TW-3 was fitted with a submersible pump and 1-inch diameter PVC measuring tube. A 5 hp Goulds stainless steel submersible pump was set in TW-3 at a depth of 400 feet. A 15 hp *Goulds*TM stainless steel submersible pump, with 2 inch galvanized steel piping, was set in TW-5 at a depth of 300 feet. The TW-6 test well was fitted with a Grundfos 40hp stainless steel submersible pump and 3 inch galvanized steel piping at a depth of 220 feet. Test Well TW-8 was pumped during both pump tests but with the pump set at a different depth. For the first test a 7.5 hp Sta-RiteTM stainless steel submersible pump, with 2 inch galvanized steel piping, was set to a depth of 400 feet and then lowered to 700 feet for the second 72-hour test. The submersible pump settings were based upon the projected volume of water to be pumped from each well, available drawdown, and the former 1989 and 2008 pumping test results. The pumps were powered by portable diesel fueled electric generators. The pump settings for each of the test wells is included on **Table 1**.

Observation Wells

Before, during, and after the two 72-hour pumping tests, HES monitored selected wells and staff gauges on the subject site. One monitoring well, four piezometers (P-1, P-2, P-3 and P-4), and two test wells were monitored during the first pump test and three test wells were monitored during the second pump

test along with the piezometers and on-site monitoring well. The locations of these wells are shown on **Figure 2**. The Geologic Logs for P-1, P-2, P-3, P-4 and the drilled well, adjacent to two of the pumping wells, MW-1, are included in **Appendix 4**.

HES canvassed the off-site area surrounding the proposed Gan Eden Estates property with respect to pumping wells to obtain homeowner permission to monitor existing residential supply wells during the pumping test periods. Permission for a total of 12 off-site wells, including 11 residences and one Town of Fallsburg well, was granted to HES to monitor their supply wells during the pumping tests (Table 2). Initially 10 wells were monitored during the first 72-hour pump test and two more local residences requested to have their wells monitored prior to the start of the second pump test. Beginning several days before initiation of the two 72-hour pumping tests, HES monitored the off-site supply wells from the area surrounding the well field. All of these wells are individual residential supply wells with the exception of the Park Slope well which services a group of cottages and the Fallsburg Town well which supplies multiple residences in the area. The observation wells were monitored on a daily basis before, during and after the pumping test at set intervals using pressure transducer data loggers installed in each of these wells and manually at times as a cross-check to the transducers. The off-site monitoring well locations with respect to the site and test wells are shown on Figure 2.

Surface Water Monitoring

HES installed staff gauges in surface water bodies and kept photo logs of each gauge. A total of three staff gauges (SG-1, SG-2 and SG-3) were installed on- and off-site to monitor surface water impacts. SG-1 was installed on-site in a small flowing stream approximately 150 feet northeast of TW-5. SG-2 was installed on-site in a shallow pond between TW-3 and TW-5 and TW-6. SG-3 was installed off-site just off the bank of the Mongaup River where it passes beneath Columbia Hill Road to the north of the site. Locations of the three staff gauges are shown on **Figure 2**.

Rainfall Monitoring

Prior to the start of the first pumping test, HES installed a rain gauge located in the vicinity of the test wells. The location was in an open field area and at a distance from any interfering objects for accuracy. The gauge was recorded each day HES was on-site and emptied as needed. During the testing period, no rainfall was recorded, however, rainfall did occur during the time between the two tests. The measured rainfall totals and days rainfall was reported from The Weather Channel (www.weather.com) are shown in **Table 4**.

Water Quality

During pump testing, HES collected water quality samples from Test Wells TW-3, TW-5, TW-6 and TW-8. The samples were collected in appropriate laboratory supplied containers in accordance with industry accepted practices on October 20 and November 3 and 7, 2016 after pumping each of the wells for a least 22 hours. The samples were placed on ice in a cooler and transported to Phoenix Environmental Laboratories, Inc., a New York State certified laboratory located in Manchester, Connecticut for NYSDOH DWS Full Part V analyzer, Environmental Associates Ltd. located in Ithaca, New York for MPA and York Analytical Laboratories, Inc., located in Stamford, Connecticut, for potable water quality analysis. The test well groundwater quality laboratory analytical results are summarized on **Table 3** and the raw data is included in **Appendix 5**.

RESULTS OF PUMPING TEST

First 72-Hour Pump Test – October 14, 2016

Pumping Wells

The first 72-hour pumping test at TW-3, TW-5 and TW-8 began on October 17, 2016. The TW-5 pump was started at 10:40, the TW-3 pump was started at 11:45, and the TW-8 pump was started at 12:45. Pressure transducer data loggers measured the depth to water in the wells during the pumping test and calculated the drawdown, which is plotted versus time on an arithmetic graph. The initial pumping rates at each well were 26 gpm, 173 gpm and 34 gpm for TW-3, TW-5 and TW-8 respectively, and flow rates were then adjusted, if needed, to achieve stabilization. Flow rates were recorded periodically throughout the duration of the test and are shown on **Figure 26**. The hydrographs for the pumping wells during the first pump test are included on **Figures 3** through **5**. The pumps were turned off on October 20, 2016, in the same order they were turned on, starting with TW-5 at 10:50, TW-3 at 12:10 and TW-8 at 12:50. **Figures 3, 4** and **5** are hydrographs showing depth to water (in feet) versus time (in minutes) for TW-3, TW-5 and TW-8.

The TW-3 graph demonstrates that drawdown stabilization occurred during the last 16 hours of pumping, when the drawdown curve achieves a relatively flat slope, as recorded on the hydrograph (**Figure 3**). Stabilization at TW-3 was achieved by reducing the pumping rate to 14 gpm. Over the last 12 hours of testing, the drawdown in TW-3 was 3.01 feet; over the last six hours of testing the drawdown was 1.72 feet or 0.29 feet per hour. Stabilization is defined by NYSDOH as 0.5 feet drawdown per 100 feet of available drawdown in the well over the final 6 hours of pumping. The slow rate of drawdown over this period demonstrates that stabilization was achieved after the flow rate was reduced. Test well TW-3 recharged rapidly upon cessation of pumping with 60% recovery

within 17 minutes after pumping was stopped. The well was 95% recovered after only 107 minutes after the pump was turned off.

Pumping well TW-5 stabilized about 20 hours before the close of the test at a pumping rate of 171 gpm. The drawdown at TW-5 during the last 12 hours of pumping was 3.6 feet and 2.39 feet during the final 6 hours before shut down of the test (**Figure 4**). Drawdown of 0.40 feet per hour during the last 6 hours shows that stabilization did not occur during the pump test, however the 180-day drawdown analysis (**Appendix 6**) shows that TW-5 can be safely pumped at this flow rate as the projected 180 day drawdown does not fall below the 5% margin above the pump intake. Recharge for TW-5 was slower than TW-3, requiring 315 minutes, or 5 hours and 15 minutes to recover 60%. Full recovery was not achieved until October 23, 2016, at 19:11 (3 days and 8 hours) to recover 95%.

TW-8 stabilized about 18 hours before shut down at a pumping rate of 16 gpm. During the final 12 hours of pumping, depth to water in TW-8 dropped 4.57 feet and 3.02 feet during the last 6 hours of pumping (**Figure 5**). This drawdown rate of 0.5 feet per hour shows that stabilization was achieved at this pumping rate. After pump cessation, TW-8 took 21 minutes to recover 60% and 840 minutes, or 14 hours, to recover 95%.

Observation Wells

On-Site Wells

HES observed evidence of hydrogeologic influence (drawdown) on-site at the overburden monitoring well MW-1, two of the four piezometers (P-1 and P-2), and two bedrock test wells (TW-4 and TW-6). Water levels in these wells during the monitoring period demonstrated drawdown and fluctuations consistent with the pumping test. The hydrographs for the impacted on-site observation wells are shown as **Figures 6, 11** and **12**. The raw water level monitoring data for the on-site observation wells are included in **Appendix 2**. The data logger set in TW-4 was faulty and failed to collect any data so no hydrograph was generated; however, a measurement was made prior to starting the test and during the pump test using an electric tape water level meter. The depth to water before starting the test at TW-4 was 102.3 feet and on October 19, 2016, at 10:43 (2 days after the start of the test) the depth to water was 173.67 feet, indicating that TW-4 was affected by on-site pumping.

Off-Site Wells

The off-site monitoring program indicated that only two of the ten observations wells experienced drawdown effects due to on-site pumping during the first 72-hour pump test. The Dast Parrandeh Well (89 Main Street), located to the East of the subject site on County Road 104, shows an initial depth to water level of 85 feet at the start of pumping and then a decline to 92 feet after one day of pumping (**Figure 16**). The observed straight line on the graph, starting on October 17, 2016, at 13:00, indicates that the water level in the well dropped below the data logger installed in the well; thus the data logger did not record the full extent of drawdown in the well during pumping. No hand held electric tape or data logger was able to measure the depth to water in the well below this level due to the presence of a blockage in the well, most likely a solid rubber pump stabilizer or other unknown blockage in the well annulus. The well head was housed inside a wooden shed and could not be removed without the risk of damaging the structure or the pump.

The Cole Well, located at 82 Main Street on the western side of County Road 104, directly across from the Dast Parrandeh well, was also affected during this pump test (**Figure 15**). Initial depth to water prior to pumping was 75 feet and dropped to a depth of 85 feet by the end of the pump test. Recharge in their well began immediately following shut down.

None of the other off-site private wells monitored demonstrated any appreciable drawdown as a result of the first pumping test, although variable fluctuation can be seen in many off-site wells. However, for each observed drop in water level in these monitored wells, an equal rate of recovery was observed to pre-pumping static or above pre-pumping levels. Hydrographs showing depth to water versus time for the off-site private wells during the first pump test are shown on **Figures 13** through **17**, and **Figures 19** through **22** and **Figure 24**. The raw water level monitoring data for all off-site wells are included in **Appendix 3**.

Surface Water Monitoring

None of the monitored surface water bodies observed any effects from this pump test (**Figure 25**). Discharge line locations were carefully selected to not to influence any nearby streams or water bodies (**Figure 2**). Although drawdown was observed in the shallow aquifer (MW-1) and wetland wells (P-1 and P-2) near TW-5 and TW-6, no measurable amount of surface water impacts were detected at any staff gauge location. Drawdown observed in MW-1 was 6.101 feet and in P-1 and P-2 was 1.089 feet and 0.673 feet respectively during pumping as shown on **Figures 11** and **12**.

Second 72-Hour Pump Test – November 2, 2016

Pumping Wells

The second 72-hour pumping test at TW-6 and TW-8 (with the pump set deeper in this well at 700 feet below grade) began on November 2, 2016. TW-8 was started at 14:40 and TW-6 started at 16:43. Pressure transducer data

loggers measured the depth to water in the wells during the pumping test and calculated the drawdown, which was plotted versus time on an arithmetic graph. The initial pumping rate for TW-6 was 285 gpm which was shortly reduced to 235 gpm. TW-8 was initially set to 33 gpm, then lowered to 23 gpm to allow the well to stabilize. **Figure 27** shows a plot of flow rate versus time for TW-6 and TW-8. The pumps were turned off on November 5, 2016, in the same order they were turned on, starting with TW-8 at 15:45, then TW-6 at 16:45. **Figure 7** and **8** are hydrographs showing depth to water (in feet) versus time (in minutes) for TW-6 and TW-8.

The graph for TW-6 demonstrates that water level stabilization occurred during the last 24 hours of pumping, when the drawdown curve achieves a relatively flat slope (**Figure 7**). Over the last 12 hours of testing, the drawdown in TW-6 was 2.47 feet; over the last six hours of testing the in this well was 1.334 feet or 0.22 feet per hour. The slow rate of drawdown over this period demonstrates that stabilization was achieved. Test well TW-6 recharged with 60% recovery in 346 minutes (5.7 hours) after pumping was stopped. The well reached 90% recovery by 06:50 on November 7, 2016; 39 hours after the pump was turned off.

TW-8 did not reach stabilization during the final 26 hours of the pump test **(Figure 8)**. Drawdown for the last 12 hours before testing stopped was 7.683 feet and 4.279 feet during the final 6 hours of pumping shows that TW-8 did not meet stabilization, however, the projected 180 day drawdown shows that TW-8 can safely be pumped at this flow rate as it does not infringe on the 5% margin over the pump intake (**Appendix 6**). After pumping stopped, TW-8 took 24 minutes to recover 60% and 614 minutes (10 hours and 14 minutes) to recover to 90% of static.

Observation Wells

On-Site Wells

HES observed evidence of hydrogeologic influence (drawdown) on-site in the overburden monitoring well MW-1, two of the four piezometers (P-1 and P-2), and test well TW-5. Water levels in these wells during the monitoring period demonstrated drawdown and fluctuations are consistent with the pumping test. The hydrographs for the on-site observation wells are shown as **Figures 9**, **10**, **11** and **12**. The water level monitoring data for the on-site observation wells are included in **Appendix 2**. The P-2 data logger was moved to an off-site well before the test so measurements were collected manually using an electric tape water level meter. The data logger in TW-4 had failed and no data was collected during this pump test so it is undetermined if the second pump test influenced TW-4, although based on the findings after first pump test it is likely that drawdown due to pumping occurred in this well.

Off-Site Wells

The off-site monitoring program indicated that only three of the twelve observations wells experienced drawdown effects due to on-site pumping during the second 72-hour pump test. The Hobby Well (Figure 18) and Schneider Well (Figure 23) were added to the off-site well monitoring program before the start of the second pump test upon homeowner requests. Homeowner Mr. Chester Hobby (273 Mongaup Road) requested his potable well be monitored during the second 72-hour pump test after noticing changes in visual water quality during the first 72-hour pump test. Again, both the Cole Well and Dast Parrandeh Well, Figures 15 and 16 respectively, were impacted during the pump test. The water level at the Dast Parrandeh Well had an initial depth of about 85 feet and dropped to 92 feet shortly after the start of the test. The straight line on the hydrograph where the water level appears to stabilize at 92 feet indicates that the water level in the well dropped beneath the data logger thus the data logger did not record the full extent of drawdown during pumping. The initial depth to water in the Cole Well prior to pumping was 73 feet and dropped to 82 feet at the end of the 72-hour test. Recharge at the Cole Well began immediately after the pumping had stopped. The Hobby Well, located just over a mile from the nearest pumping well on site, was also impacted during pumping. The initial depth to water prior to pumping in the Hobby Well was 12 feet and dropped to about 30 feet by the end of the test.

None of the other off-site private wells observed demonstrated appreciable drawdown as a result of the pumping test, although variable fluctuation was observed on the respective hydrographs. However, for each observed drop in water level in these monitored wells, an equal rate of recovery was observed to pre-pumping static or above pre-pumping levels. Hydrographs showing depth to water versus time for the off-site private wells during the second pump test are provided as **Figures 13** through **24**. The water level monitoring data for all off-site wells are included in **Appendix 3**.

Surface Water Monitoring

During the second pump test, none of the monitored surface water bodies observed any effects from pumping (**Figure 25**). Even though an appreciable amount of drawdown was observed in the shallow overburden aquifer (MW-1) and wetlands near TW-5 and TW-6, no measurable surface water impacts were detected at SG-1 which flows through the same wetland area monitored by P-1 and P-2.

Rainfall Monitoring During Pump Tests

The results of rainfall monitoring before, during and after testing, indicate that a total of 1.5 inches of rainfall was recorded by the on-site rain gauge

between October 24, 2016 and November 4, 2016. On October 24, 2016, 0.63 inches of rain water was collected in the rain gauge, 0.75 inches were observed on October 28, 2016, and 0.12 inches on November 4, 2016. After checking The Weather Channel (www.weather.com), four rain events occurred after the first pump test was completed. On October 22, 2016, 0.53 inches of rain were recorded, on October 24, 2016, 0.12 inches of rain were recorded, 0.79 inches of rain were recorded on October 27, 2016, and on October 30, 2016 0.11 inches of rainfall were recorded. Therefore, a total of 1.55 inches of rainfall fell during the test period.

According to the National Weather Service (www.weather.gov) the yearto-date rainfall in Binghamton, New York, (the local forecasting office for Hurleyville, New York) shows a lower than average rainfall prior to, and during, both pump tests. At the start of the first pump test the average year-to-date rainfall was at a deficit of the annual average approximately 7 inches, and was at approximately a 5 inch deficit from the average at the start of the second pump test. Rainfall for 2016 remained below average since Mid-March and remained below average throughout the rest of the year with a total annual rainfall of 4 inches below average.

Groundwater recharge effects can be observed on-site in the shallow monitoring well MW-1 (**Figure 11**) and piezometers P-1, P-2 and P-4 (**Figure 12**) hydrographs during the October 27, 2016, rain event. No recharge was recorded in any of the on-site bedrock test well hydrographs. Recharge was recorded in only two off-site wells, the Cole Well (**Figure 15**) and the Fallsburg Well H-1 (**Figure 24**) following the October 27, 2016, rain event. The results of rainfall monitoring are included on **Table 4**.

WATER QUALITY

On-Site Pumping Wells

During the end of the 72-hour pumping tests, test wells TW-3, TW-5, TW-6 and TW-8 were sampled for analysis according to the NYS Sanitary Code Part 5 and the requirements of the SCDOH, which includes the following parameters:

- Full inorganic and physical chemical analysis including nitrates and nitrites
- Microbiological for E. coli and total coliform
- Organic Compounds including methyl tertiary butyl ether (MTBE)
- Synthetic Organic Compounds
- Microscopic Particulate Analysis (MPA)

The water quality results for test wells TW-5 and TW-6 illustrate that the groundwater quality is suitable for potable public water supply according to the NYS Sanitary Code Part 5. Total coliform and concentrations of iron exceeded

NYSDOH standards in the water sample collected from TW-3. TW-8 was found to have a turbidity level slightly above NYSDOH standards possibly due to the presence of high concentrations of iron in the groundwater. Levels of iron were detected at concentrations of 0.31 milligrams per liter (mg/L) from TW-3 and 0.49 mg/L at TW-8, which exceeds its SCDOH drinking water standard of 0.30 mg/L. MPA results only found silt sized particulates in all four wells with no biological matter detected resulting in a United States Environmental Protection Agency (USEPA) risk factor of zero. The analytical results are summarized in **Table 3** and the data as provided by the laboratory are attached as **Appendix 5**.

Hobby Well

Mr. Chester Hobby reported impacts to his water quality during the first 72-hour pump test and was added to the off-site well monitoring program during the second test. As requested by the town of Fallsburg, HES collected a potable water sample during pumping and one week after cessation of the second test. The water samples were analyzed for iron, manganese and total dissolved solids (TDS). The results from the two sampling events are summarized below. The during pumping sample, collected on November 5, 2016, shows much higher iron concentration and trace concentrations of manganese when compared to the after pump test sample, collected on November 30, 2016. TDS was higher during the second round of testing, however, the potable water sample was collected from different locations during each sampling event. The November 5, 2016 sample was collected from an outdoor spigot after treatment. The only water treatment at the Hobby residence appears to be an inline water filter. The laboratory analytical data is attached in **Appendix 5**.

Sampling Date	lron (mg/L)	Manganese (mg/L)	TDS (mg/L)
November 5, 2016	4.56	0.036	70
November 30, 2016	0.0535	ND	104

ND = not detected above reporting limits

DISCUSSION OF RESULTS

The results of the two 72-hour pumping tests conducted on the previously installed supply wells TW-3, TW-5, TW-6 and TW-8 demonstrates that these wells are more than capable of meeting the water demands for the proposed project (1,341) bedrooms using TW-3, TW-5 and TW-8 as the primary wells with TW-6 as the backup well. The results of pump testing demonstrate that well stabilization was achieved at TW-3 at a pumping rate of 13 gpm, TW-5 at 171

gpm, TW-6 at 205 gpm and TW-8 at 22 gpm after the pump was lowered in the well for the second pump test. The wells had substantial remaining available drawdown at the end of pumping and a rapid recovery rate after shutdown indicates that the wells were not over-pumped at the prescribed pumping rate.

The results of the two 72-hour pump tests indicate that six of the on-site observation wells were impacted due to the pumping. Two piezometers (P-1 and P-2) were set in the wetlands near TW-5 and TW-6 and MW-1 located in the shallow overburden aquifer between test wells TW-5 and TW-6. The on-site drawdown impacts to the observation wells P-1 and P-2 was approximately 0.5 to 1 foot while about 6 feet of drawdown was observed in the overburden at MW-1. These three wells are all screened in the overburden material beneath the site and are an indication that pumping the bedrock aquifer at test well TW-5 and TW-6 did induce drawdown in the shallow unconsolidated aquifer at the site. Thus, the overburden aquifer is hydrogeologically connected to the bedrock aquifer at the site; however, none of the surface water bodies in the area were affected due to the pumping (with the exception of the northern most wetland). Observation wells P-1, P-2 and MW-1 are all located within 150 feet from pumping wells TW-5 and TW-6.

The most significant drawdown impact observed in an on-site observation well was at TW-6 during the first 72-hour pump test, and in TW-5 during the second 72-hour pump test, which experienced a drawdown of 100.37 feet and 124.05 feet, respectively. The significant drawdown at these two wells indicates that wells TW-6 and TW-5 draw water from the same fractures or water-bearing units in the bedrock aquifer. The hydrogeologic behavior of TW-5 and TW-6 mimicked each other during the pumping and the recovery periods of the two tests.

On-site test well TW-4, located to the east of TW-8, experienced drawdown due to pumping. During the second pump test, TW-3 was used as an on-site monitoring well, and no drawdown was observed during the 72-hour pumping period.

The results from off-site monitoring demonstrated that pumping did induce off-site impacts in the surrounding residential supply wells that were monitored. The two nearest private wells, Dast Parrandeh Well (89 Main Street) and Cole Well (82 Main Street), were impacted during both pump tests and the Hobby Well (273 Mongaup Road), who requested monitoring after a change in visual water quality during the first test, was also impacted during the second 72-hour pump test. The Dast Parrandeh Well, located 75 feet east of the site on the western side of County Road 104, experienced a drawdown of at least 7 feet before the water level dropped below the depth of the data logger set in the well. The Cole Well, located on the opposite side of County Road 104, experienced approximately 8 feet of drawdown during both pump tests. During the second

pump test, the Hobby Well, located approximately 1.03 miles northwest of the site at 273 Mongaup Road, experienced approximately 15 feet of drawdown during the pumping period. This amount of drawdown is significant and may have been enough to cause the change in water quality that the homeowner reported.

CONCLUSIONS

- 1. The 72-hour pumping testing confirms that TW-3 has the capacity of 14 gpm, TW-5 has a capacity of 171 gpm, TW-6 has a capacity of 205 gpm and TW-8 has a capacity of 22 gpm after the pump was lowered to a deeper point in the well. Since stabilization was reached in all four wells during pump testing based on both 180-day logarithmic plots and drawdown monitoring, these pumping rates can be maintained and sustained long-term.
- 2. On-site monitoring demonstrated that sustained pumping at the proposed wells induced drawdown in the three on-site overburden wells. The observed drawdown in these wells is an indication that pumping wells TW-5 and TW-6 are hydrogeologically connected to the overburden aquifer.
- 3. Off-site monitoring of residential and community supply wells surrounding the proposed Gan Eden Estates property demonstrated that sustained pumping of the Gan Eden Estates supply well, induced drawdown in three residential supply wells, two located immediately to the east of the site and one to the north of the site. Specifically, the Cole, Dast Parrandeh and Hobby Wells were affected by on-site pumping with drawdown ranging up to 15 feet. However, the test wells during both pump tests were pumped at twice the daily demand of the project, therefore, when the project demand of 102.4 gpm is pumped, it is likely that off-site drawdown will be proportionally less or non-existent. This also holds true for the on-site overburden and wetland wells.
- 4. All four wells either achieved stabilization during the pump test for a period of at least 6 hours or remained over the 5% margin above the pump intake when drawdown was projected over 180 days. The well recovery was fairly rapid in all four wells, and had substantial available drawdown at the end of 72 hours of pumping. Thus, the proposed supply wells were not overpumped and the rated capacities for these wells are considered conservative.
- 5. Rainfall that occurred prior to and during pump testing was not significant enough to induce recharge to the bedrock aquifer beneath the site as is supported by the hydrographs for the on-site bedrock wells.

RECOMMENDATIONS

Based on the results of the water supply assessment, including two separate 72-hour pump tests, HES recommends the following:

- Test wells TW-3, TW-5 and TW-8 be utilized as the main supply wells for the proposed development and that TW-6 should be utilized as the backup supply well. This scenario will be in compliance with the NYSDEC requirement for double the daily demand of the proposed project with the best well out of service.
- Based on the results of the off-site well monitoring program, HES recommends that the Cole, Dast Parrandeh and Hobby Wells be fitted with 1-inch PVC drop tubes so that a data logger may be installed in these wells for long-term monitoring purposes following development and full-time use of the proposed on-site water supply. This will allow for quantitative proof that pumping the on-site supply wells (TW-3, TW-5 and TW-8) at the required rate of 102.4 gpm will not adversely impact these existing off-site supply wells.
- A formal water supply permit application should be forwarded to the NYSDEC with this Water Supply Assessment Report for final water supply approval.
- The Water Supply Assessment Report should be submitted to the Delaware River Basin Commission (DRBC) for review and approval of the water supply for the project.
- Based on the results of the on-site overburden aquifer and surface water monitoring, the proposed water supply treatment system should be designed to address the NYSDOH requirements of a community water supply under the influence of surface water.

REFERENCES

Fisher, Donald W., Yngvar W. Isachen, and Lawrence V. Rickard. (1970) Geologic Map of New York, Lower Hudson.

Leggette, Brashears & Graham, Inc. (1989) Ground-Water Supply Well Pumping Test Report, Gan Eden Estates Hurleyville, New York.

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

On-site Well Construction Details Pumping Rates

On-site Wells	Total Depth (feet)	Pump Setting (feet)	Pumping Rate (gpm)	Geology	
MW-1	23.3	~	~	5-7'	sand, fine to medium, brown, moist
10100 - 1	23.3	~	~	10-12'	sand and gravel, coarse sand, wet
TW-3	520	400	14	0-10'	till material
100-5	520	400	14	10-520'	interbedded gray siltstone, red shale
TW-4	604	~	~	NA	NA
TW-5	200	250	171	0-16'	clay, silt and gravel
C-VV I	380	350	171	16-380'	interbedded gray siltstone, red shale
TW-6	460	220	205	0-16'	clay, silt and gravel
1 • • • •	400	220	205	16-460'	interbedded gray siltstone, red shale
TW-8	700	400/700	16/22	0-8'	Clay
1 **-8	700	400/700	10/22	8-700'	interbedded gray siltstone, red shale
PZ-1	1	~	~	0-1'	peat, silt, root matter
PZ-2	1.5	2	~	0-1.5'	peat, silt, root matter
PZ-3	1	~	~	0-1'	peat, silt, leaf matter
PZ-4	1.5	~	~	0-1.5'	silt, leaf matter

gpm = gallons per minute ~ = non-pumping well

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

Summary of Off-Site Water Supply Wells

Map I.D.	Address	Last Name	Approximate Distance from Test Wells (miles)	Direction from Test Wells
1	1047 Old Liberty Road	Miller	0.69	Southwest
2	1059 Old Liberty Road	Betters	0.65	Southwest
3	1079 Old Liberty Road	Schneider	0.63	Southwest
4	1128 Old Liberty Road	Nestler	0.60	South
5	15 Whittaker Road	Mackney	0.55	Southeast
6	31 Whittaker Road	Gaor	0.64	Southeast
7	92 Whittaker Road	Chaussy	0.90	Southeast
8	82 Main Street	Cole	0.20	Southeast
9	89 Main Street	Dast Parrandeh	0.17	Southeast
10	273 Mongaup Road	Hobby	1.03	Northwest
11	Fallsburg Town Well (H-1)		0.90	Northwest
12	Park Slope		1.18	Northeast

Wells listed were monitored during the 72-hour pump tests.

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

Results of Water Quality Analyses

Sample ID Phoenix ID		Dout F. Submout F 1	TW-3 BV60751 & BV78109	TW-5 BV60752 & BV75662	TW-6 BV75660	TW-8 BV60753 & BV75661
Sampling Date	Reporting	Part 5, Subpart 5-1 Public Water Systems	10/20 & 11/7/2016	10/20 & 11/3/2016	11/3/2016	10/20 & 11/3/2016
Client Matrix	limit	Limit	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Compound			Result	Result	Result	Result
Miscellaneous/Inorganics		•				
Alkalinity-CaCO3	20.0	mg/L	40	67	55	61
Chloride	3.0	250 mg/L	52.2	13.1	13.400	13.2
Color, Apparent	1	Color Units	ND	ND	ND	ND
2,3,7,8-TCDD	5.00	pg/L	ND	ND	ND	ND
Escherichia Coli	1	0 MPN/100 mls	ND	ND	Absent	ND
Cyanide, Free Fluoride	0.005	0.2 mg/L	ND	ND	ND ND	ND 0.12
Gross Alpha Water	3	2.2 mg/L pci/L	ND ND	ND ND	ND ND	4.34
Gross Beta Water	4	pci/L	ND	ND	ND	ND
Glyphosate	6.0	ug/L	ND	ND	ND	ND
Hardness (CaCO3)	0.1	mg/L	71.7	53.8	ND	25.9
Langelier Index		pH units	-2.15	-1.49	-4.760	-1.87
Nitrite as Nitrogen	0.004	1 mg/L	ND	ND	ND	ND
Nitrate as Nitrogen	0.05	10 mg/L	0.4700	0.1600	0.1800	0.1500
Odor at 60 Degrees C	1	T.O.N.	ND	ND	ND	ND
pH	0.10	pH Units	6.7200	7.2200	7.3400	7.2000
Propylene Glycol	7.0	mg/L	ND ND	ND ND	ND ND	ND ND
Radium 226 Radium 228	1	pci/L pci/L	ND ND	ND ND	0.993	ND ND
Sulfate	3.0	250 mg/L	3.9	5.7	5.9	7.7
Total Cyanide (Drinking water)	0.005	0.2 mg/L	ND	ND	< 0.005	ND
Total Coliforms	1	0 MPN/100 mls	16	ND	Absent	ND
Tot. Diss. Solids	10	mg/L	140	92	59.00	110
Turbidity	0.20	5 NTU	1.12	0.86	1	9.98
Uranium, Total	1.0	ug/L	ND	ND	NT	2.94
Bromate	1.0	0.01 ug/L	ND	ND	ND	ND
Chlorite	0.010	1 mg/L	ND	ND	ND	ND
Radon	11.2	pCi/l	3,130	2,770	818	1,040
Heterotrophic Plate Count	10	CFU/ml	995	428	1	289
Metals, Total	0.0008	0.006 mg/l	ND	ND	ND	ND
Antimony Arsenic	0.0008	0.006 mg/L 0.01 mg/L	ND ND	ND	ND ND	0.001
Barium	0.0005	2 mg/L	0.257	0.126	ND	0.001
Beryllium	0.0003	0.004 mg/L	ND	ND	ND	ND
Cadmium	0.001	0.005 mg/L	ND	ND	ND	0.001
Calcium	0.005	mg/L	20.600	16.700	0.008	8.390
Chromium	0.001	0.1 mg/L	ND	ND	ND	0.001
Copper	0.002	1.3 mg/L	0.013	ND	ND	0.01
Iron	0.01	0.3 mg/L	0.31	0.03	ND	0.49
Lead	0.0010	0.015 mg/L	0.0022	ND	ND	0.0015
Magnesium	0.005	mg/L	4.93	2.95	ND	1.21
Manganese	0.001	0.3 mg/L	0.073	0.001	ND	0.016
Mercury Nickel	0.0002	0.002 mg/L mg/L	ND 0.002	ND ND	ND ND	ND ND
Selenium	0.001	0.05 mg/L	0.002 ND	ND	0.001	0.001
Silver	0.001	0.05 mg/L 0.1 mg/L	ND	ND	0.001	0.001 ND
Sodium	0.001	mg/L	13.1	10.5	ND	18.8
Thallium	0.0007	0.002 mg/L	ND	ND	ND	ND
Zinc	0.001	5 mg/L	0.063	0.061	ND	0.457
PCBs By E508						
PCB-1016 (screen)	0.080	0.5 ug/l	ND	ND	ND	ND
PCB-1221 (screen)	0.10	0.5 ug/l	ND	ND	ND	ND
PCB-1232 (screen)	0.10	0.5 ug/l	ND	ND	ND	ND
PCB-1242 (screen)	0.10	0.5 ug/l	ND	ND	ND	ND
PCB-1248 (screen)	0.10	0.5 ug/l	ND	ND	ND	ND
PCB-1254 (screen)	0.10	0.5 ug/l	ND	ND	ND	ND
PCB-1260 (screen)	0.10	0.5 ug/l	ND	ND	ND	ND
PCB-1262 (screen) PCB-1268 (screen)	0.10	0.5 ug/l 0.5 ug/l	ND ND	ND ND	ND ND	ND ND
Volatiles By E524.2	0.10	U.S Ug/I	טא			טא
1,1,1,2-Tetrachloroethane	0.50	5 ug/L	ND	ND	ND	ND
1,1,1-Trichloroethane	0.50	5 ug/L	ND	ND	ND	ND
, ,	5.55					

HydroEnvironmental Solutions, Inc.

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

Results of Water Quality Analyses

Sample ID			TW-3	TW-5	TW-6	TW-8
Phoenix ID	Departing	Part 5, Subpart 5-1	BV60751 & BV78109	BV60752 & BV75662	BV75660	BV60753 & BV75661
Sampling Date	Reporting limit	Public Water Systems	10/20 & 11/7/2016	10/20 & 11/3/2016	11/3/2016	10/20 & 11/3/2016
Client Matrix	innit	Limit	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Compound			Result	Result	Result	Result
1,1,2,2-Tetrachloroethane	0.50	5 ug/L	ND	ND	ND	ND
1,1,2-Trichloroethane	0.50	5 ug/L	ND	ND	ND	ND
1,1-Dichloroethane	0.50	5 ug/L	ND	ND	ND	ND
1,1-Dichloroethene	0.50	5 ug/L	ND	ND	ND	ND
1,1-Dichloropropene	0.50	5 ug/L	ND	ND	ND	ND
1,2,3-Trichlorobenzene	0.50	5 ug/L	ND	ND	ND	ND
1,2,3-Trichloropropane	0.50	5 ug/L	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.50	5 ug/L	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.50	5 ug/L	ND	ND	ND	ND
1,2-Dichlorobenzene	0.50	5 ug/L	ND	ND	ND	ND
1,2-Dichloroethane	0.50	5 ug/L	ND	ND	ND	ND
1,2-Dichloropropane	0.50	5 ug/L	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.50	5 ug/L	ND	ND	ND	ND
1,3-Dichlorobenzene	0.50	5 ug/L 5 ug/L	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropropane		0,				
1,4-Dichlorobenzene	0.50	5 ug/L 5 ug/L	ND ND	ND ND	ND	ND ND
2,2-Dichloropropane 2-Chlorotoluene	0.50	0	ND ND	ND ND	ND ND	ND ND
4-Chlorotoluene	0.50	5 ug/L 5 ug/L	ND ND	ND ND	ND ND	ND ND
Benzene	0.50	0,	ND	ND	ND	ND
Bromobenzene	0.50	0,	ND	ND	ND	ND
Bromochloromethane	0.50	5 ug/L 5 ug/L	ND	ND	ND	ND
Bromodichloromethane	0.50	ug/L	ND	ND	ND	ND
Bromoform	0.50	ug/L ug/L	ND	ND	ND	ND
Bromomethane	0.50	5 ug/L	ND	ND	ND	ND
Carbon tetrachloride	0.50	5 ug/L	ND	ND	ND	ND
Chlorobenzene	0.50	5 ug/L	ND	ND	ND	ND
Chloroethane	0.50	5 ug/L	ND	ND	ND	ND
Chloroform	0.50	ug/L	ND	ND	ND	ND
Chloromethane	0.50	5 ug/L	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.50	5 ug/L	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.40	5 ug/L	ND	ND	ND	ND
Dibromochloromethane	0.50	ug/L	ND	ND	ND	ND
Dibromomethane	0.50	5 ug/L	ND	ND	ND	ND
Dichlorodifluoromethane	0.50	5 ug/L	ND	ND	ND	ND
Ethylbenzene	0.50	5 ug/L	ND	ND	ND	ND
Hexachlorobutadiene	0.50	5 ug/L	ND	ND	ND	ND
Isopropylbenzene	0.50	5 ug/L	ND	ND	ND	ND
m&p-Xylene	0.50	ug/L	ND	ND	ND	ND
Methyl t-butyl ether (MTBE)	0.50	10 ug/L	ND	ND	ND	ND
Methylene chloride	0.50	5 ug/L	ND	ND	ND	ND
Naphthalene	0.50	ug/L	ND	ND	ND	ND
n-Butylbenzene	0.50	5 ug/L	ND	ND	ND	ND
n-Propylbenzene	0.50	5 ug/L	ND	ND	ND	ND
o-Xylene	0.50	5 ug/L	ND	ND	ND	ND
p-Isopropyltoluene	0.50	5 ug/L	ND	ND	ND	ND
sec-Butylbenzene	0.50	5 ug/L	ND	ND	ND	ND
Styrene	0.50	5 ug/L 5 ug/L	ND ND	ND ND	ND ND	ND ND
tert-Butylbenzene Tetrachloroethene	0.50	5 ug/L 5 ug/L	ND ND		ND ND	ND ND
Toluene	0.50	5 ug/L 5 ug/L	ND ND	ND ND	ND ND	ND
Total Trihalomethanes	0.50	80 ug/L	ND	ND	ND	ND
Total Xylenes	0.50	ug/L	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.50	5 ug/L	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.40	5 ug/L	ND	ND	ND	ND
Trichloroethene	0.50	5 ug/L	ND	ND	ND	ND
Trichlorofluoromethane	0.50	5 ug/L	ND	ND	ND	ND
Vinyl chloride	0.50	2 ug/L	ND	ND	ND	ND
Semivolatile Organic By E525.3	5.50	<u> </u>				
Benzo(a)pyrene	0.02	ug/L	ND	ND	ND	ND
Bis(2-ethylhexyl)adipate	0.60	ug/L	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	0.60	ug/L	ND	ND	ND	ND

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

Results of Water Quality Analyses

Commite ID			TW 2	TW-5	THE	TW-8
Sample ID Phoenix ID		Part 5, Subpart 5-1	TW-3 BV60751 & BV78109	BV60752 & BV75662	TW-6 BV75660	BV60753 & BV75661
Sampling Date	Reporting	Public Water Systems	10/20 & 11/7/2016	10/20 & 11/3/2016	11/3/2016	10/20 & 11/3/2016
Client Matrix	limit	Limit	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Compound			Result	Result	Result	Result
Pesticides By E508						
Aldrin	0.010	ug/L	ND	ND	ND	ND
Chlordane	0.010	2 ug/L	ND	ND	ND	ND
Dieldrin	0.010	ug/L	ND	ND	ND	ND
Endrin	0.010	2 ug/L	ND	ND	ND	ND
Heptachlor	0.010	0.4 ug/L	ND	ND	ND	ND
Heptachlor Epoxide	0.010	0.2 ug/L	ND	ND	ND	ND
Hexachlorobenzene	0.010	ug/L	ND	ND	ND	ND
Hexachlorocyclopentadiene	0.010	ug/L	ND	ND	ND	ND
Lindane	0.010	0.2 ug/L	ND	ND	ND	ND
Methoxychlor	0.010	40 ug/L	ND	ND	ND	ND
Propachlor	0.050	ug/L	ND	ND	ND	ND
Toxaphene	1.0	3 ug/L	ND	ND	ND	ND
Organophosphorus Pesticides By E507					· · -	
Alachlor	0.10	2 ug/L	ND	ND	ND	ND
Atrazine	0.10	3 ug/L	ND	ND	ND	ND
Butachlor Metolachlor	0.10	ug/L	ND ND	ND ND	ND	ND
Metolachlor Metribuzin	0.10 0.10	ug/L ug/L	ND ND	ND ND	ND ND	ND ND
Simazine	0.10	ug/L 4 ug/L	ND	ND	ND	ND
Herbicides By E515.3	0.070	4 ug/L	ND	ND	ND	ND
2,4,5-T	0.50	ug/L	ND	ND	ND	ND
2,4,5-TP	0.20	10 ug/L	ND	ND	ND	ND
2,4-D	0.10	50 ug/L	ND	ND	ND	ND
Dalapon	1.0	ug/L	ND	ND	ND	ND
Dicamba	0.50	ug/L	ND	ND	ND	ND
Dichloroprop	0.50	ug/L	ND	ND	ND	ND
Dinoseb	0.20	7 ug/L	ND	ND	ND	ND
Pentachlorophenol	0.040	1 ug/L	ND	ND	ND	ND
Picloram	0.10	ug/L	ND	ND	ND	ND
Haloacetic Acids By E552.2						
Bromochloroacetic Acid	1.0	ug/L	ND	ND	ND	ND
Dibromoacetic Acid	1.0	ug/L	ND	ND	ND	ND
Dichloroacetic Acid	1.0	ug/L	ND	ND	ND	ND
Monobromoacetic Acid	1.0	ug/L	ND	ND	ND	ND
Monochloroacetic Acid	2.0	ug/L	ND	ND	ND	ND
Total Haloacetic Acids	1.0	60 ug/L	ND	ND	ND	ND
Trichloroacetic Acid	1.0	ug/L	ND	ND	ND	ND
Endothall By E548.1		<i>.</i>				
Endothall	9.0	ug/L	ND	ND	ND	ND
EDB and DBCP Analysis By E504.1	0.02	0.2	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane (DBCP) 1,2-Dibromoethane (EDB)	0.02 0.01	0.2 ug/L 0.05 ug/L	ND ND	ND ND	ND ND	ND ND
Diquat By E549	0.01	0.03 ug/L		טא		טא
Diquat	0.40	20 ug/L	ND	ND	ND	ND
Carbamates HPLC By E531.2	0.40	20 ug/L		שא		
3-Hydroxycarbofuran	0.50	ug/L	ND	ND	ND	ND
Aldicarb	0.50	3 ug/L	ND	ND	ND	ND
Aldicarb Sulfone	0.80	2 ug/L	ND	ND	ND	ND
Aldicarb Sulfoxide	0.50	4 ug/L	ND	ND	ND	ND
Carbaryl	0.50	ug/L	ND	ND	ND	ND
Carbofuran	0.90	40 ug/L	ND	ND	ND	ND
Methomyl	0.50	ug/L	ND	ND	ND	ND
Oxamyl	2.0	ug/L	ND	ND	ND	ND
Asbestos in Water By E600/4-84						
Asbestos fibers (>0.5u and <10u)	6.40	7 MFL	ND	ND	ND	ND
Asbestos fibers (>10u)	0.768	7 MFL	ND	ND	ND	ND
		MICROSCOPIC	PARTICULATE ANALYS	IS		
Particulate Debris						
Large particle (5um & larger)	Found/Not Found	~	fine silt	fine silt	fine silt	fine silt
Small particle (up to 5um)	Found/Not Found	~	fine brown amorphous	fine brown amorphous	fine brown amorphous	fine brown amorphous
Plant debris	Found/Not Found	~	NF	NF	NF	NF

HydroEnvironmental Solutions, Inc.

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

Results of Water Quality Analyses

Sample ID			TW-3	TW-5	TW-6	TW-8
Phoenix ID	Descrition	Part 5, Subpart 5-1	BV60751 & BV78109	BV60752 & BV75662	BV75660	BV60753 & BV75661
Sampling Date	Reporting	Public Water Systems	10/20 & 11/7/2016	10/20 & 11/3/2016	11/3/2016	10/20 & 11/3/2016
Client Matrix	limit	Limit	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Compound			Result	Result	Result	Result
Protozoans						
Other Coccidia	Found/Not Found	~	NF	NF	NF	NF
Other protozoans	Found/Not Found	~	NF	NF	NF	NF
Algae						
Green Algae	Found/Not Found	~	NF	NF	NF	NF
Diatoms	Found/Not Found	~	NF	NF	NF	NF
Blue-Green Algae	Found/Not Found	~	NF	NF	NF	NF
Flagellated Algae	Found/Not Found		NF	NF	NF	NF
Other Organisms						
Nematodes	Found/Not Found	~	NF	NF	NF	NF
Nematode eggs	Found/Not Found	~	NF	NF	NF	NF
Rotifers	Found/Not Found	~	NF	NF	NF	NF
Crustaceans	Found/Not Found	~	NF	NF	NF	NF
Crustacean eggs	Found/Not Found	~	NF	NF	NF	NF
Insects	Found/Not Found	~	NF	NF	NF	NF
Other	Found/Not Found	~	NF	NF	NF	NF

Notes:

ND = not detected above reporting limits

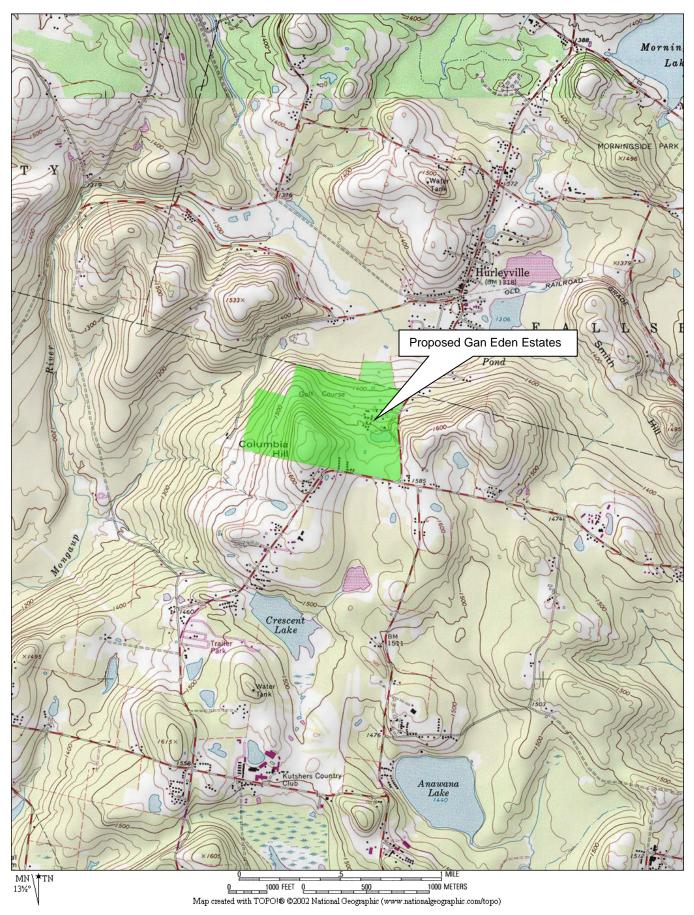
NT = not tested

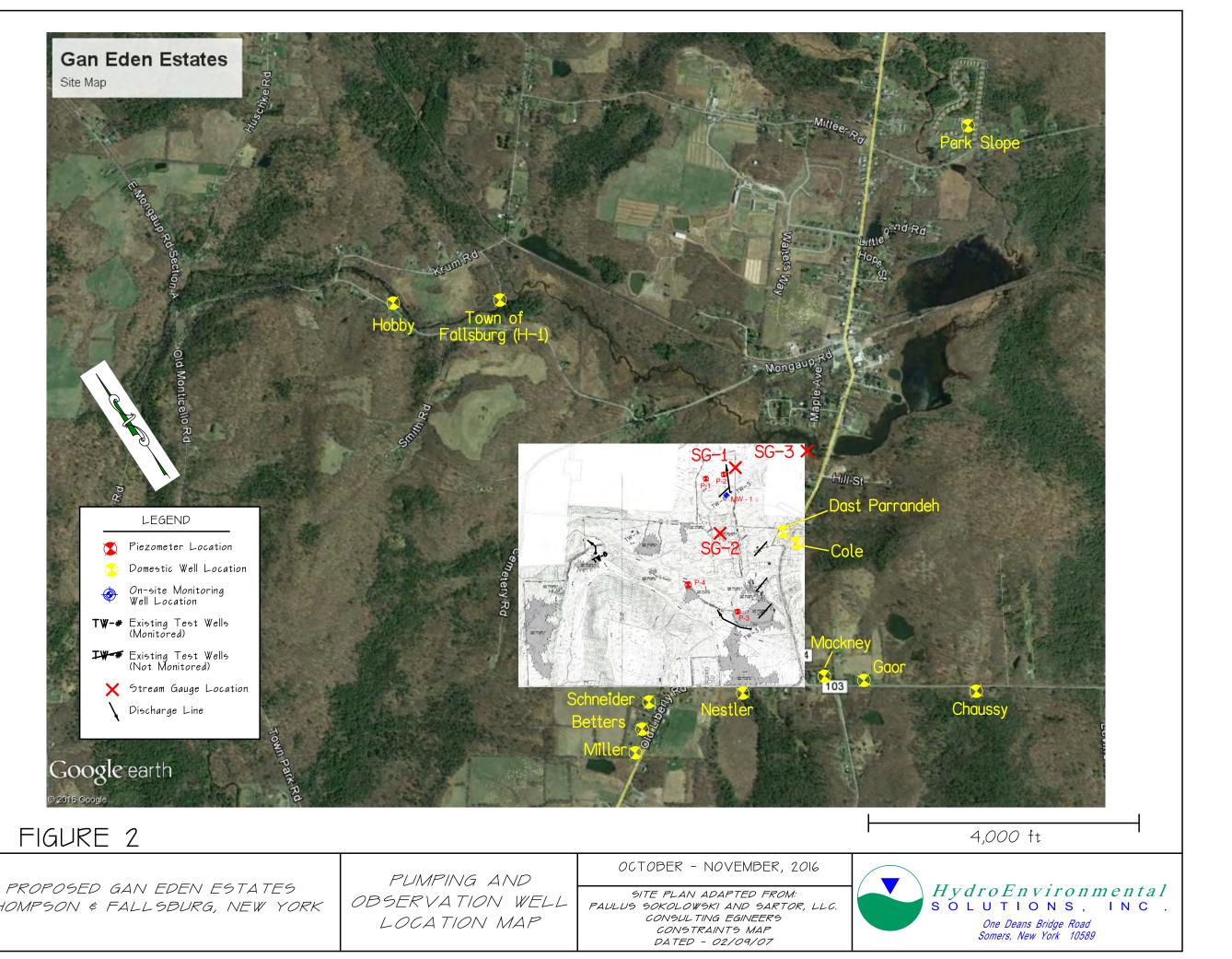
NF = not found

= Exceeds Limits

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, Sullivan County, New York

On-site Rain Gauge Monitoring Log

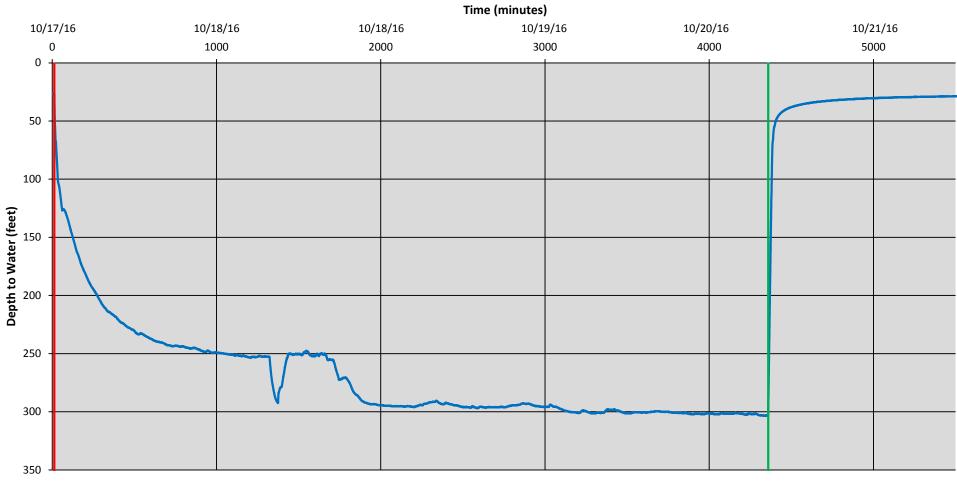

Date (Reported)	Date (Measured)	Rainfall Collected in Rain Gauge (in)
10/22/2016	10/24/2016	0.63
10/27/2016	10/28/2016	0.75
10/30/2016	11/04/2016	0.12
	Total:	1.50


Notes:

Reported = Date rain event was reported by weather station Measured = Date rain gauge was measured by HES FIGURES

FIGURE 1

Site Location Map



THOMPSON & FALLSBURG, NEW YORK

Figure 3 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

TW-3 Pumping Well Hydrograph

72-Hour Pump Test - 1



- Water Level - Pump ON - Pump OFF

Figure 4 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York

TW-5 Pumping Well Hydrograph

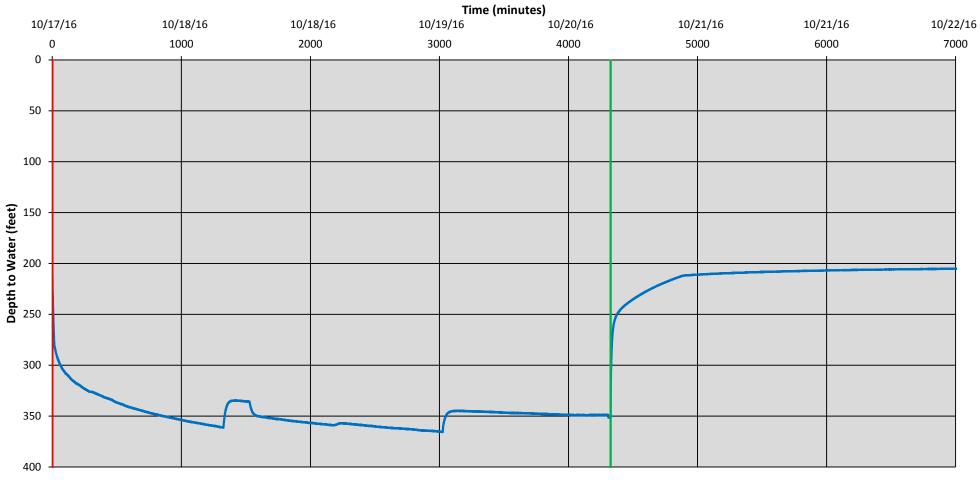
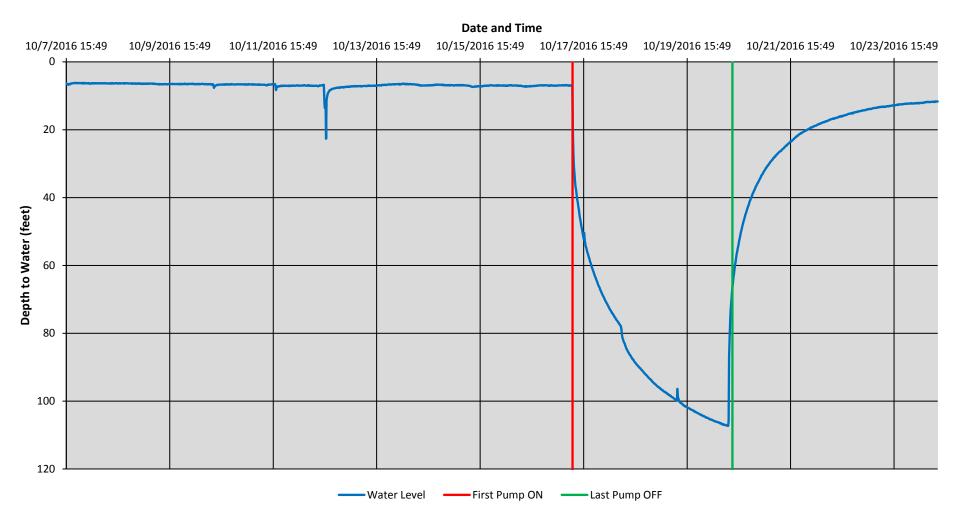

72-Hour Pump Test - 1

Figure 5 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York


TW-8 Pumping Well Hydrograph

72-Hour Pump Test - 1

Figure 6 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York

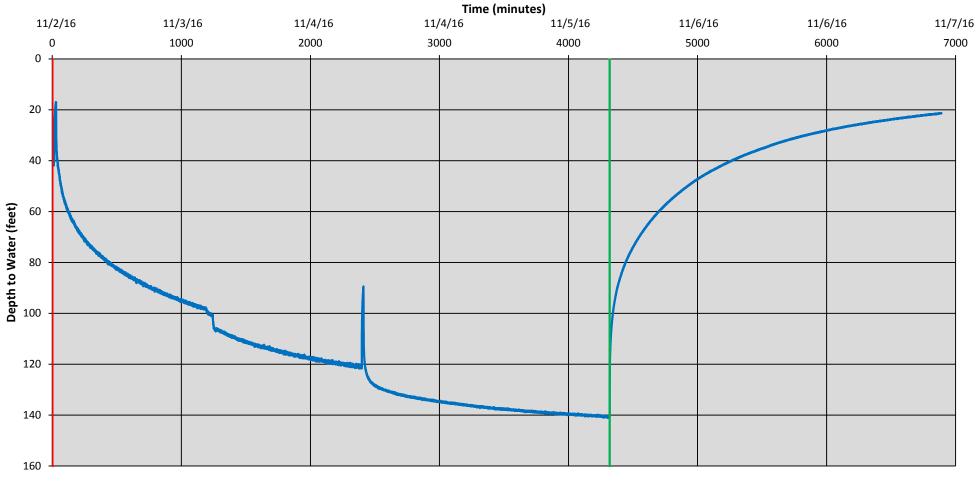
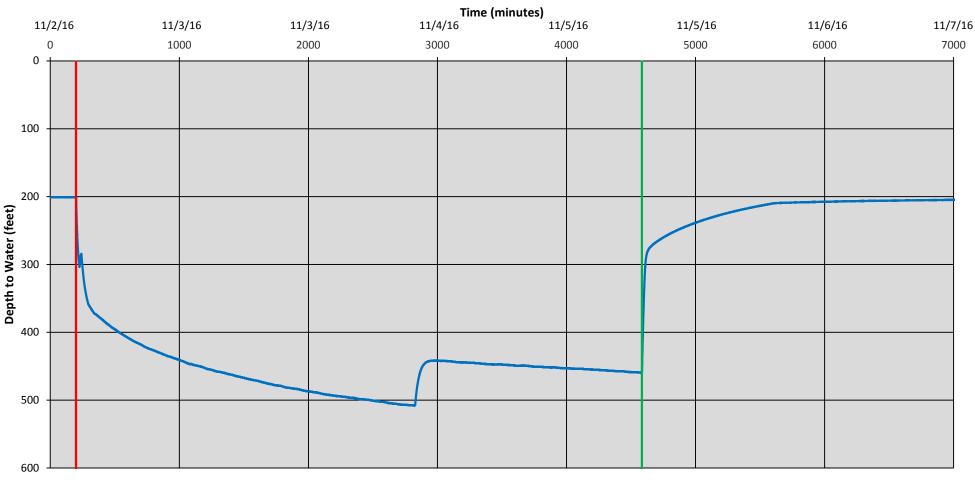
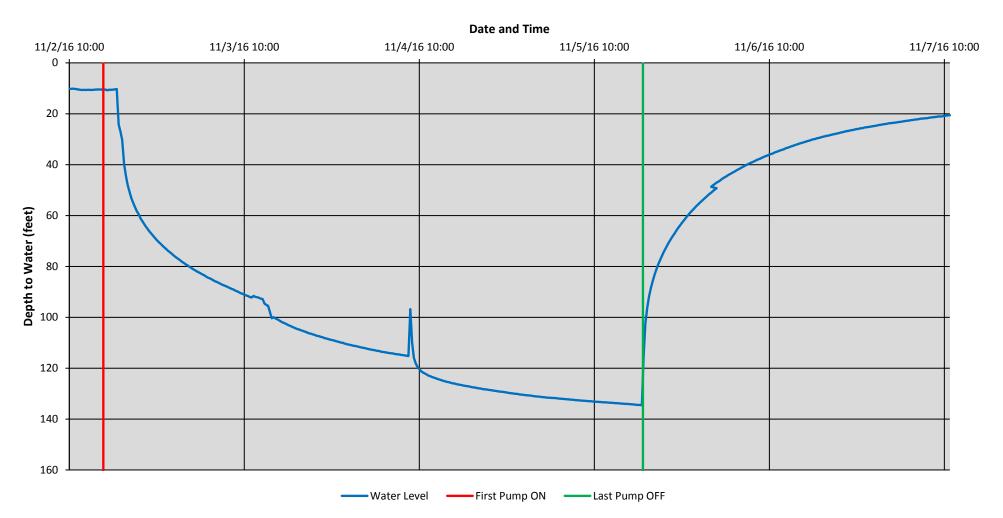

TW-6 Monitoring Well Hydrograph 72-Hour Pump Test - 1

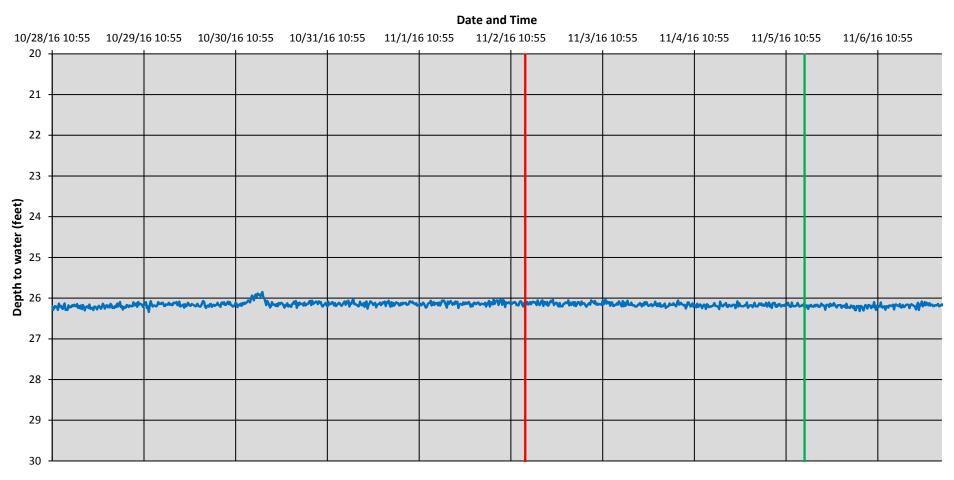
Figure 7 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York


TW-6 Pumping Well Hydrograph

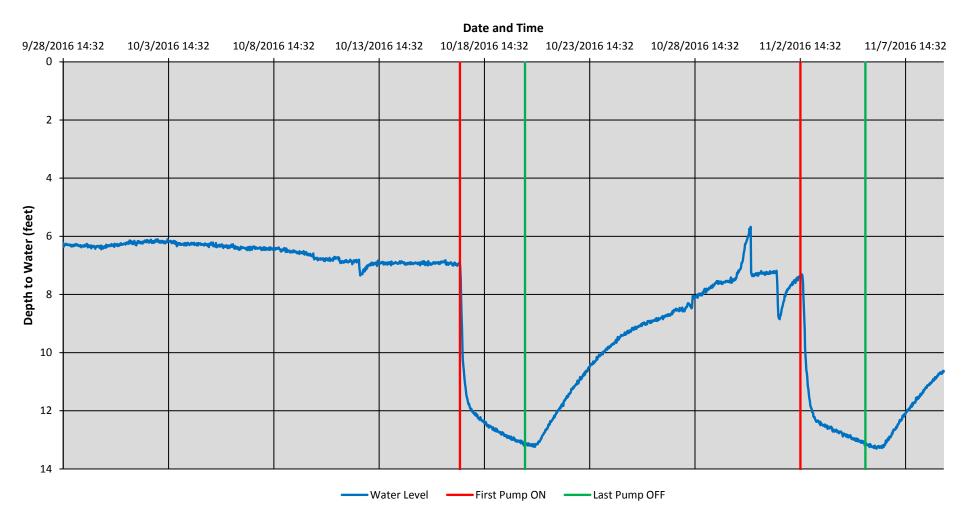
72-Hour Pump Test - 2


Figure 8 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York

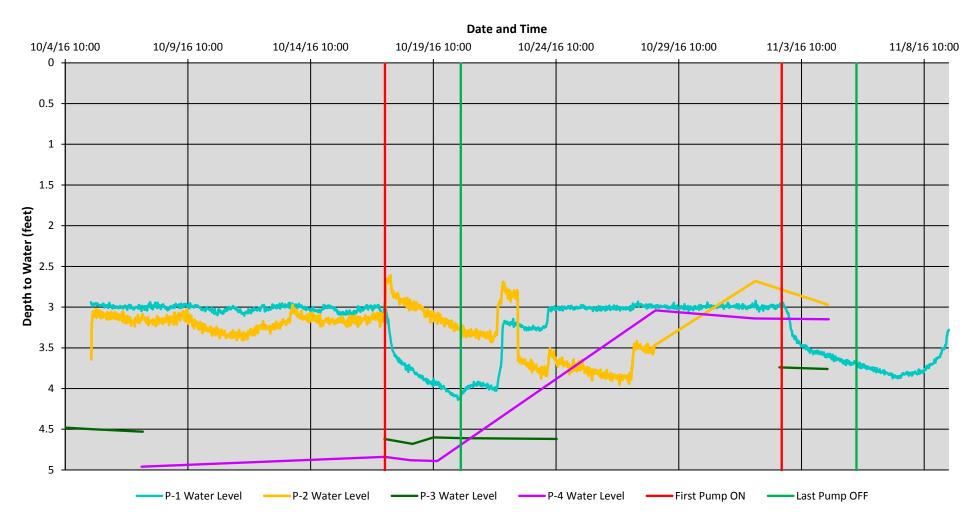
TW-8 Pumping Well Hydrograph 72-Hour Pump Test - 2


Figure 9 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York

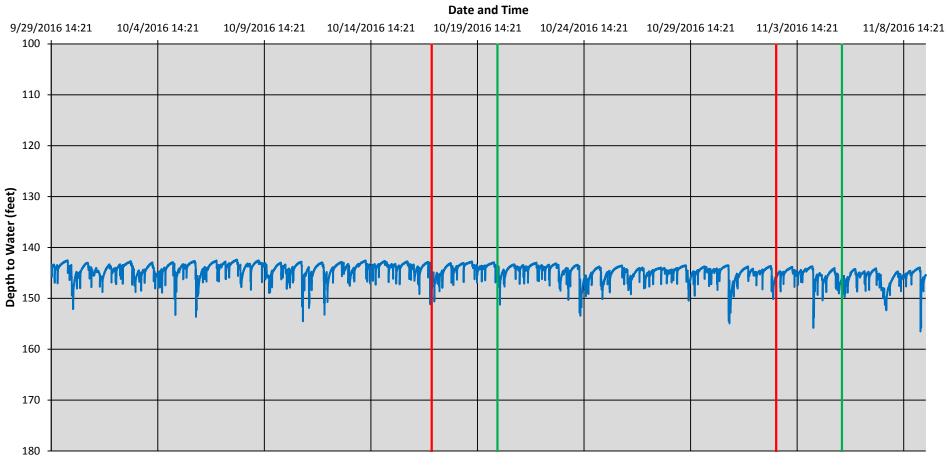
TW-5 Monitoring Well Hydrograph 72-Hour Pump Test - 2


Figure 10 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

TW-3 Monitoring Well Hydrograph 72-Hour Pump Test - 2

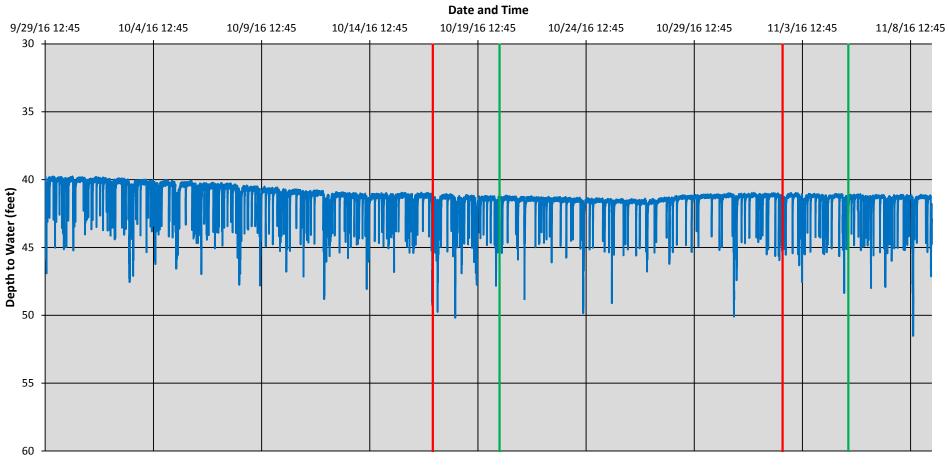

Figure 11 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

On-Site Monitor Well MW-1 Well Hydrograph

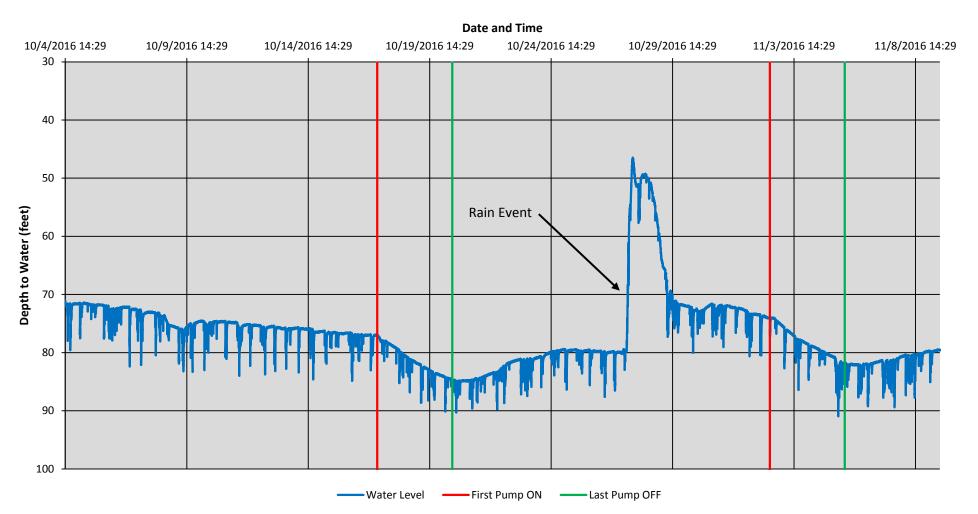

Figure 12 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

On-Site Monitor Wells P-1, P-2, P-3 and P-4 Well Hydrograph

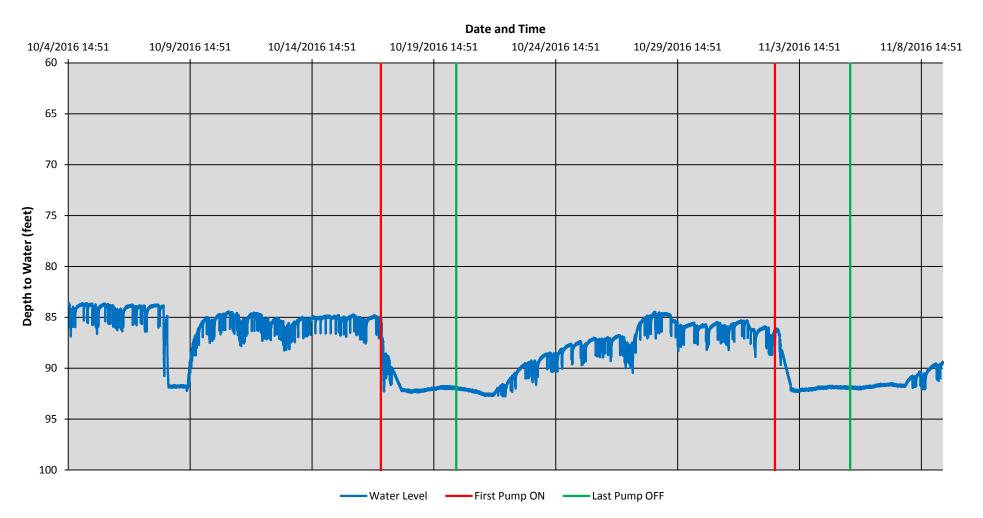
Figure 13 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York


Off-Site Monitor Well Betters Well Hydrograph

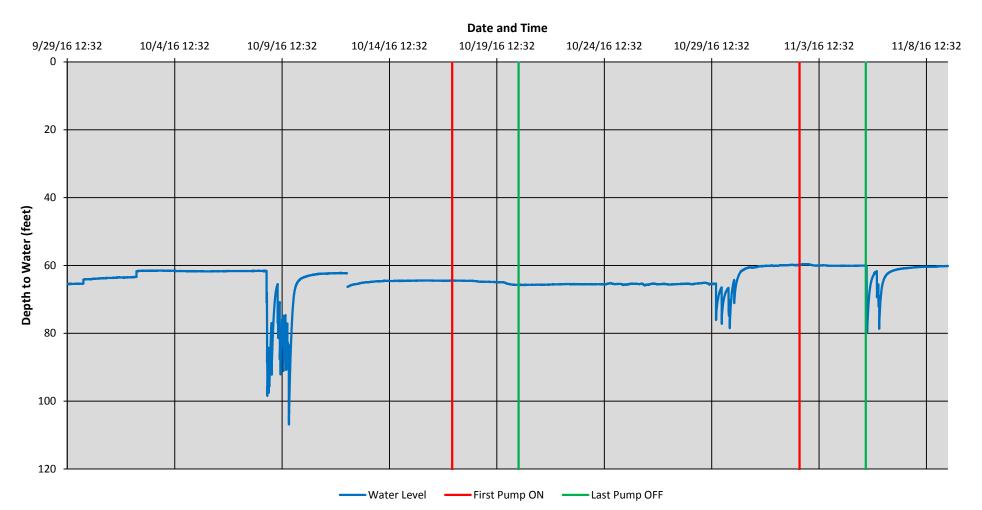
- Water Level - First Pump ON - Last Pump OFF


Figure 14 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

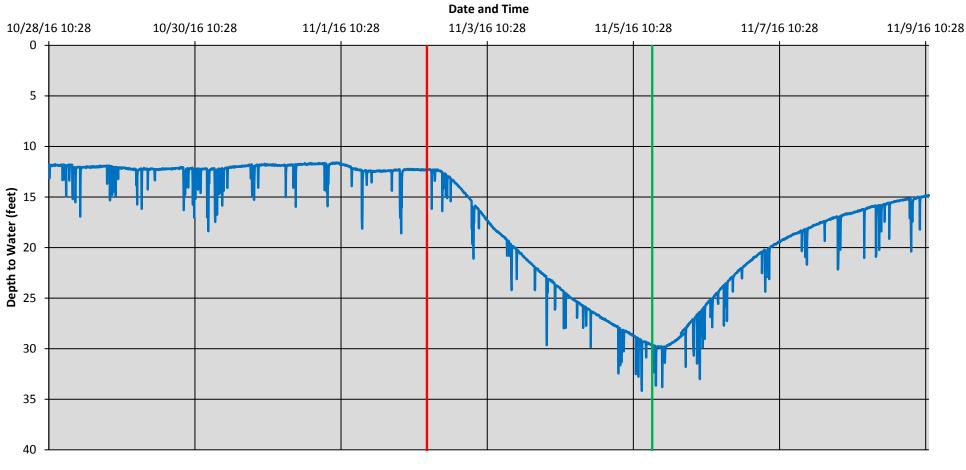
Off-Site Monitor Well Chaussy Well Hydrograph


Figure 15 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Off-Site Monitor Well Cole Well Hydrograph

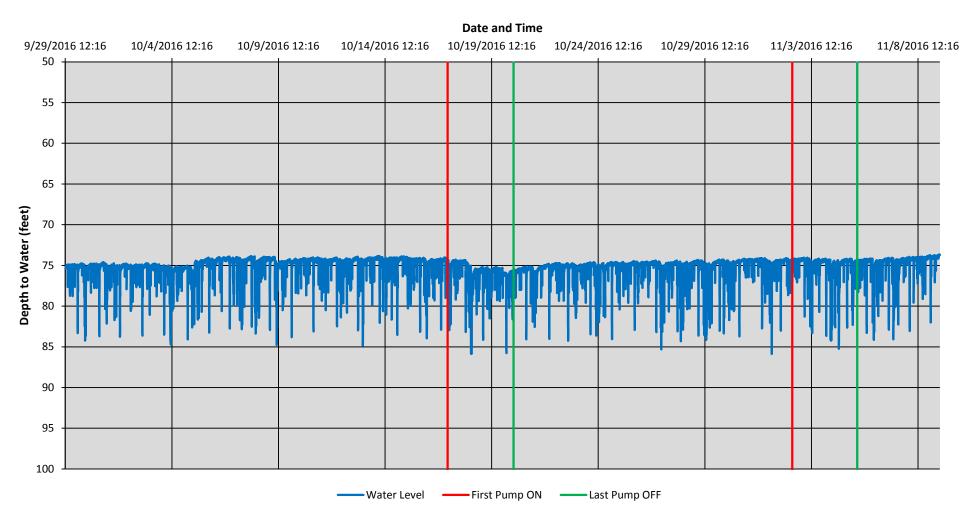

Figure 16 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Off-Site Monitor Well Dast Parrandeh Well Hydrograph

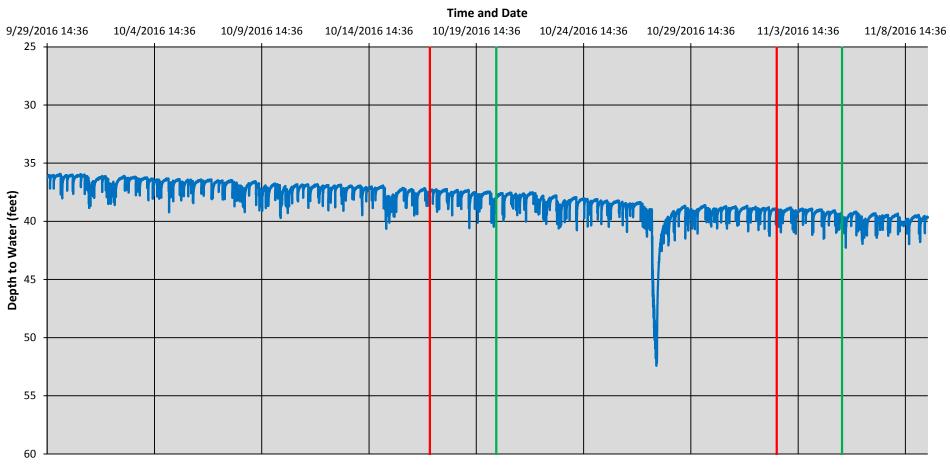

Figure 17 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Off-Site Monitor Well Gaor Well Hydrograph

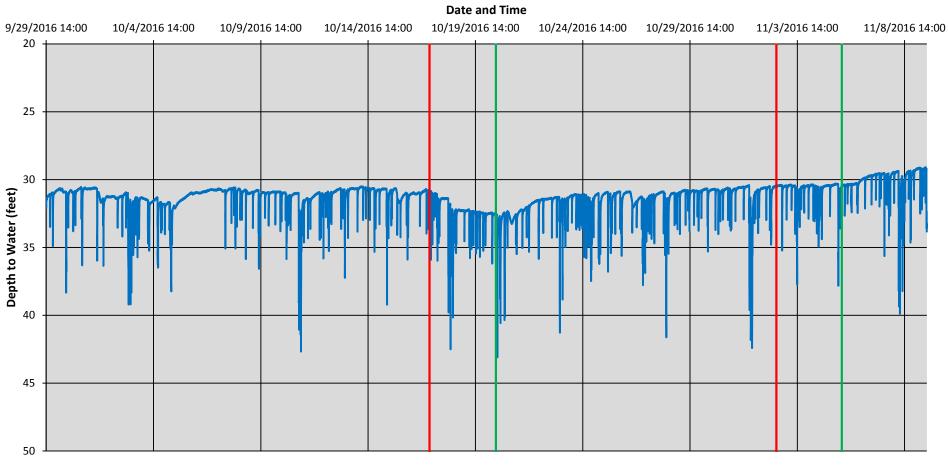
Figure 18 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York


Off-Site Monitor Well Hobby Well Hydrograph - Pump Test 2

- Water Level - First Pump ON - Last Pump OFF

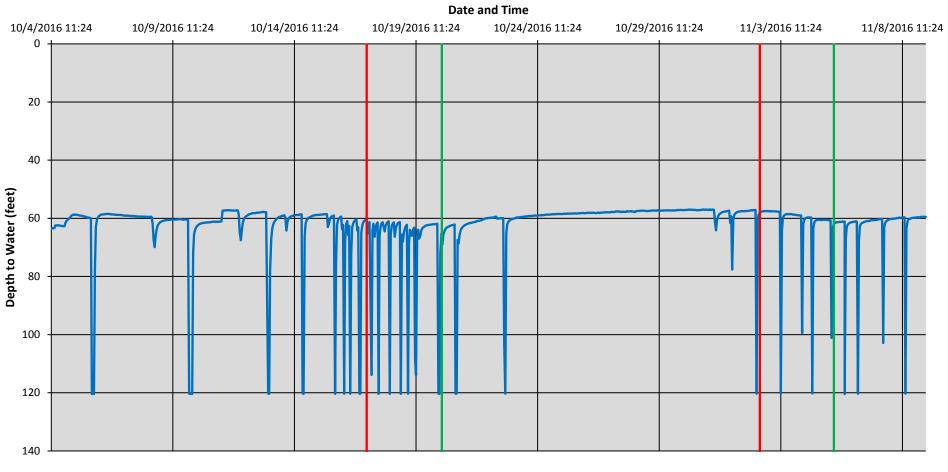

Figure 19 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Off-Site Monitor Well Mackney Well Hydrograph


Figure 20 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

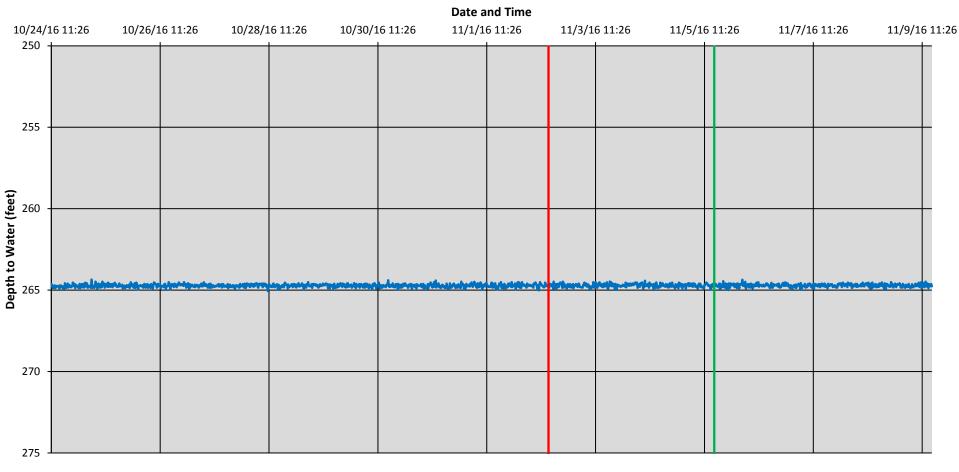
Off-Site Monitor Well Miller Well Hydrograph

Figure 21 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

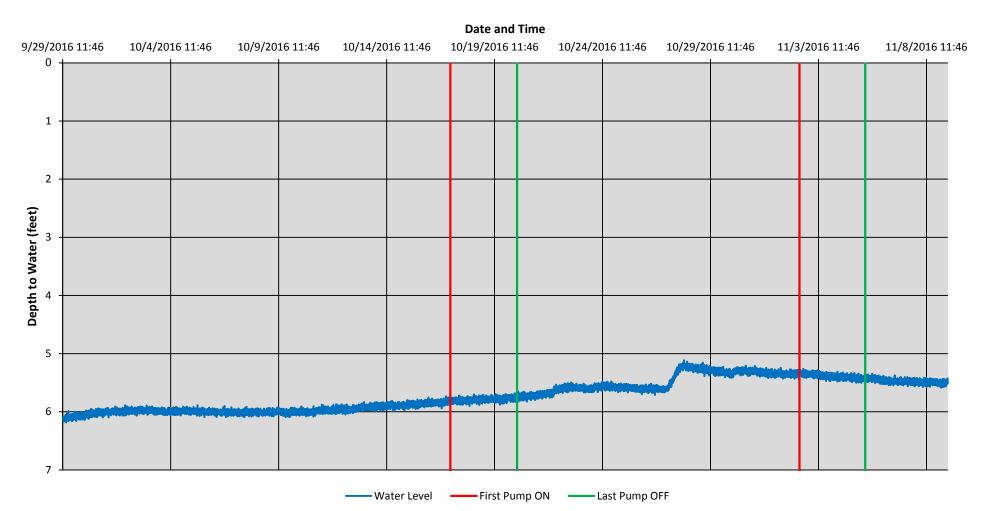

Off-Site Monitor Well Nestler Well Hydrograph

- Water Level - First Pump ON - Last Pump OFF

Figure 22 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sulliivan County, New York


Off-Site Monitor Well Park Slope Well - 1 Hydrograph

- Water Level ----- First Pump ON ------ Last Pump OFF


Figure 23 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Off-Site Monitor Well Schneider Well Hydrograph - Pump Test 2

Figure 24 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Off-Site Monitor Well Fallsburg H-1 Well Hydrograph

Figure 25 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

Stream Gauge Monitoring SG-1, SG-2 and SG-3 Hydrograph

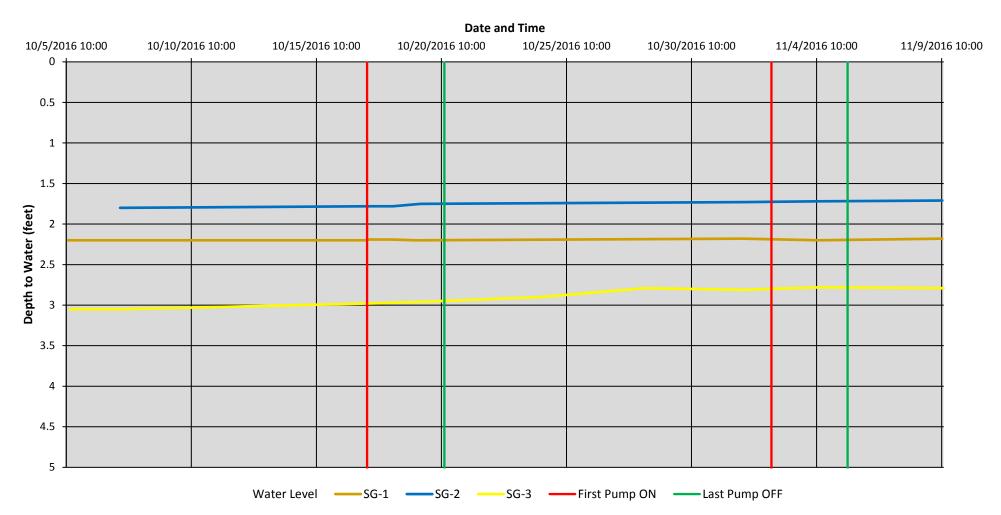
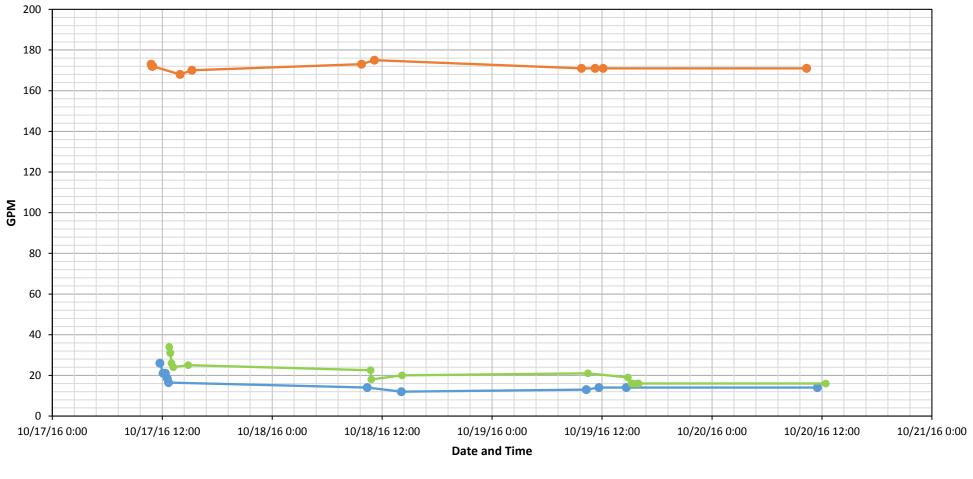
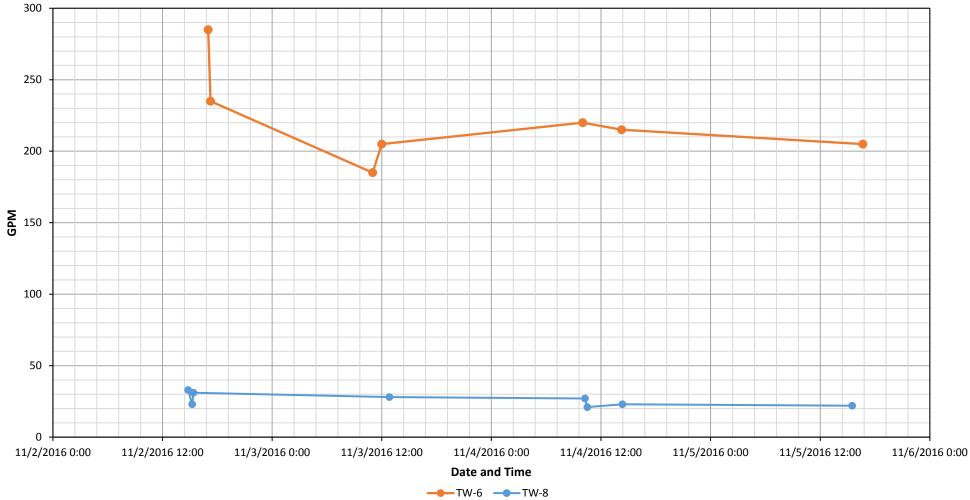



Figure 26 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

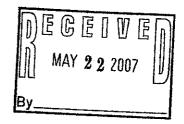

Pumping Rates 72-Hour Pump Test - 1

→TW-5 **→**TW-3 **→**TW-8

Figure 27 Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, Sullivan County, New York

APPENDICES

APPENDIX 1:


Water Supply Assessment Report - 1989 (LBG) & Groundwater Supply Assessment Report - 2008 (HES) GROUND-WATER SUPPLY WELL PUMPING TEST REPORT GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Prepared for

Gan Eden Estates

23.3

October 1989

LEGGETTE, BRASHEARS & GRAHAM, INC. Professional Ground-Water Consultants 1123 Route 52, Suite 38 Fishkill, New York

	-
SUMMARY	
INTRODUCTION	
WATER DEMAND	
WELL DRILLING	
Test Well 3	
Test Well 5	
Test Well 6	
PUMPING TEST PROGRAM	
December 5 to 7, 1988 Preliminary Pumping Test 3	
Simultaneous Pumping of TW3 and TW5 4	
TW3	
TW5	
April 17 to 20, 1989 Pumping Test 6	
LONG-TERM YIELD OF WELL SUPPLY 6	
WELL MONITORING PROGRAM	
WATER QUALITY	
CONCLUSIONS	
APPENDICES	

Page

FIGURE 1 (at end of report)

Site Location Map

LIST OF TABLES (at end of report)

TABLE

1	Estimated	Water	Demand	
2	Test Well	Data		
3	Offsite M	onitori	ng Well	Data

GROUND-WATER SUPPLY WELL PUMPING TEST REPORT GAN EDEN ESTATES HURLEYVILLE, NEW YORK

SUMMARY

Six wells were recently installed on the Gan Eden Estates property to supply a proposed 516-unit residential development. The proposed development would have an average watersupply requirement of about 116,625 gpd (gallons per day) or 81 gpm (gallons per minute). To meet New York State Department of Health (NYSDOH) guidelines, the project is required to develop double the daily demand, or 162 gpm.

Individual and multi-well pumping tests were conducted to determine which well has the highest yield and the maximum sustainable yield of the remaining wells. The results indicate that the highest-yielding well is Test Well 6 (TW6), which was tested at rates of up to 200 gpm. This yield is greater than double the daily demand of the project. A second well which is recommended for development is TW5, which was tested at rates of up to 140 gpm. TW5 would be capable of delivering more than 170 percent of the average daily demand of the project. The two wells fully meet the yield requirements of the NYSDOH.

INTRODUCTION

Leggette, Brashears & Graham, Inc., (LBG), was retained by Gan Eden Estates to investigate the availability of ground water on the proposed Gan Eden Estates property located in Hurleyville, New York (figure 1). The purpose of the investigation was to determine the maximum ground-water capacity available for site development. Our conclusions are based upon results of a 72-hour pumping test of supply wells drilled onsite. Special attention was directed to the long-term potential of the aquifer to provide a reliable water supply and to the possibility of water-level interference in neighboring offsite private wells.

WATER DEMAND

We understand that the current plan is for a development of 516 residential units. The type of units and associated water demands are listed in table 1. The estimated demand is derived according to NYSDOH guidelines and assumes that each service connection is individually metered. Table 1 indicates that the proposed development would have an average watersupply requirement of about 116,625 gpd or 81 gpm.

For new community water supplies, the NYSDOH guidelines require development of two independent sources, each capable of delivering the average daily demand of the project. In effect, the guidelines require development of double the daily demand. This requirement must be met with the best well out of service if wells are in bedrock and yields are less than 50 gpm.

WELL DRILLING

Six test wells have been drilled on the site (figure 1). Well data are summarized in table 2, and well logs are provided in Appendix A.

-2-

Prior to testing, the total estimated yield of the six test wells was approximately 535 gpm. However, it was anticipated that mutual drawdown interference among the wells would likely reduce the aggregate yield when the wells were operated simultaneously over the long term. Furthermore, because TW1, TW2 and TW4 each yield 15 gpm or less, they were not considered as sources for development of a community water supply. LBG conducted pumping tests to determine the actual well yield capacities.

Test Well 3

TW3 was drilled by Bowers Well Drilling (Bowers). The well log is included in Appendix A. The borehole was drilled to a depth of 520 feet and the driller estimated the well yield to be 30 gpm.

Test Well 5

TW5 was initially drilled by Bowers to a depth of 300 feet. The estimated yield of the well at 300 feet was 60 gpm. Eastern Well Drilling of New York, Inc. (Eastern) deepened the well from the original drilled depth to 380 feet. The drill bit encountered additional water-bearing fractures which collectively yield an estimated 175 to 200 gpm.

Test Well 6

Two was drilled by Eastern. The borehole was drilled to a depth of 460 feet and the driller estimated the well yield to be greater than 300 gpm.

PUMPING TEST PROGRAM

December 5 to 7, 1988 Preliminary Pumping Test

Prior to the simultaneous pumping test of TW3 and TW5 conducted in April 1989, a preliminary test was conducted on TW5. In November 1988 Eastern installed a 7.5 hp (horsepower) submersible pump in TW5 at a depth of 330 feet. A 1-inch

-3-

diameter access tube to allow manual measurements of water level was installed to a depth of 320 feet. A 45-hour pumping test of TW5 was conducted by LBG. The well was initially pumped at 75 gpm for the first hour of the test. During the 75-gpm pumping interval, the water level declined from a pretest flowing condition to 17 feet below the top of casing. After one hour the pumping rate was increased to the pump's maximum capacity of 100 gpm. This rate was maintained during the remainder of the test. During the 100-gpm pumping interval the rate of water-level drawdown increased slightly. However, the drawdown generally stabilized at a slow rate of decline during the last 7.5 hours of pumping. At the end of the test the depth to water was 63.6 feet.

After the test was terminated, recovery measurements were made over a 24-hour period. The water level recovered from a pumping level of 63.6 feet at the end of the test to a depth of 11.7 feet in approximately 24 hours.

Projections of the water-level drawdown trend at both pumping rates indicates that the well can be pumped at a rate of at least 100 gpm over the long term.

Water-level plots for the preliminary test of TW5 are given in Appendix B.

During the December 5 to 7, 1988 preliminary pumping test of TW5 an onsite well monitoring program was conducted. The four onsite wells monitored were TW1, TW2, TW3 and TW4. The observed drawdown in TW1, TW2 and TW4 at the end of the December test was 18.1 feet, 4.5 feet, and 15.9 feet, respectively. TW3 experienced no measurable drawdown as a result of pumping TW5.

Simultaneous Pumping of TW3 and TW5

In April, Eastern installed a 7.5-hp submersible pump in TW3 at a depth of 380 feet. A 1-inch diameter access tube to allow manual measurements of water level was installed to a depth of 370 feet. Eastern also installed a 7.5-hp submer-

-4-

sible pump in TW5 at a depth of 150 feet and a 1-inch diameter . access tube to allow manual measurements of water level.

TW3

TW3 was pumped at rates of 20, 17 and 15 gpm. The water level declined rapidly during the 20-gpm interval, from a pretest level of 21.0 feet to 244.4 feet in six hours. After six hours of pumping, the rate was decreased to 17 gpm. The level continued to decline and reached 258 feet water 3290 minutes into the test. After 3330 minutes of pumping, the rate was decreased to 15 gpm and this rate was maintained for the remainder of the test. During this period the water level gradually rose to a depth of 189.3 feet, 4110 minutes after pumping began. Between 4110 and 4200 minutes of pumping, the water level declined to a depth of 192 feet. The test was terminated after 4200 minutes (70 hours) of pumping.

When pumping stopped, the water level in TW3 recovered rapidly and was 23.6 feet below the measuring point 24 hours after shutdown. Recovery continued, and in approximately 72 hours the water level recovered to a depth of 22.6 feet, only 1.6 feet lower than the pre-test static water level of 21.0 feet.

Plots of water level for the test of TW3 are given in Appendix C.

TW5

TW5 was pumped at rates of 125 and 140 gpm. The water level declined slowly during the 125-gpm interval, from a pretest level of 6.2 feet to 56.7 feet after 1245 minutes of pumping. At 1305 minutes into the test the pumping rate was increased to 140 gpm and that rate was sustained for the remainder of the test. At this rate the yield and drawdown stabilized for the last six hours of the test. The final pumping water level was 82.0 feet, resulting in a total drawdown of 75.8 feet. When pumping stopped, the water level in TW5 recovered. rapidly and was 17.3 feet below the measuring point 24 hours after shutdown. Recovery continued, and in approximately 72 hours the water level had completely recovered.

Data from the April 1989 pumping test of TW5 and waterlevel plots are given in Appendix D.

April 17 to 20, 1989 Pumping Test

In April, Eastern installed a 20-hp submersible pump in TW6 at a depth of 320 feet. A 1-inch diameter access tube to allow manual measurements of water-level was installed at a depth of 310 feet.

Two was pumped for 72 hours at rates of 150 and 200 gpm. The water level declined slowly during the 150-gpm interval, from a pre-test level of 2.5 feet to 18.7 feet in 25 minutes. After 25 minutes of pumping the rate was increased to 200 gpm and that rate was maintained for the remainder of the test. AT this rate the yield and drawdown remained stabilized for more than the required final six hours of the test. The final pumping water level was 114.2 feet, resulting in a total drawdown of 111.7 feet.

When pumping stopped, the water level in TW6 recovered rapidly and was 20.2 feet below the measuring point less than 24 hours after shut down. Recovery continued and in approximately 72 hours the water level recovered to a depth of 7.6 feet from the measuring point, only 5.1 feet lower than the pre-test static water level of 2.5 feet.

Data from the pumping test of TW6 and water-level plots are included in Appendix E.

LONG-TERM YIELD OF WELL SUPPLY

Data from the pumping tests indicate that TW6 is the primary well source. TW6 can be pumped at rates up to 200 gpm. The test data indicate that at a rate of 200 gpm, the pumping water level will stabilize at a very slow rate of decline and be approximately 114 feet below the top of casing after three days of pumping. Any additional water-level decline during longer periods of sustained pumping will probably be minimal, in light of the very slow stabilized rate of decline observed. The data from the test indicate that the pumping water level stabilized approximately 206 feet above the major water-bearing fractures penetrated by the borehole between 320 and 420 feet.

Pumping test data indicate that TW5 should be used as the secondary well source. TW5 can be pumped at rates up to 140 gpm. The test data indicate that at a rate of 140 gpm the pumping water level will stabilize at a very slow rate of decline, and reach a depth of approximately 82 feet below the top of casing after three days of pumping. Any additional water-level decline during longer periods of sustained pumping will probably be minimal, in light of the very slow stabilized rate of decline observed. Data from the test of TW5 indicate that the pumping water level stabilized approximately 218 feet above the major water-bearing fractures penetrated by the borehole between 300 and 340 feet.

Pumping test data indicate that TW3 cannot sustain prolonged pumping at rates of 20, 17 or 15 gpm. Because of the low yield capacity of this well it is not recommended for development as part of the proposed community water supply. Wells TW6 and TW5 are sufficient for the project needs.

WELL MONITORING PROGRAM

During both the single-well 72-hour pumping test of TW6 and the multiple-well 72-hour pumping test of TW3 and TW5, LBG conducted a water-level monitoring program. A network of onsite and offsite neighboring wells was monitored to evaluate the regional impact that might result from pumping the Gan Eden Estates wells.

Prior to the beginning of testing, homeowners were canvassed by LBG to solicit their participation in the

LEGGETTE, BRASHEARS & GRAHAM, IN

-7-

monitoring program. Water levels were measured in seven selected nearby private wells, in addition to all onsite wells. The wells monitored are shown in figure 1. Water levels measured in the monitoring wells are plotted in hydrographs shown in Appendix F. Table 3 summaries the available well data on the seven private wells monitored. All seven wells are completed in the bedrock aquifer.

The purpose of the study was to determine if pumping of TW6 or the combined pumping of TW3 and TW5 for 72 hours at maximum pumping rates would significantly affect water levels and yield of onsite test wells and existing neighborhood wells.

TW1, TW2, TW3, TW4, TW5 and TW7 were monitored during the 72-hour pumping test of TW6. Hydrographs for each of theses wells except TW3 and TW7, show an immediate decline in water level resulting from pumping TW6. Water levels generally stabilized at a very slow rate of decline. The data indicate a maximum drawdown of 112.4 feet in TW5, 51.9 feet in TW4, 10.7 feet in TW1 and 5.6 feet in TW2 as a result of pumping TW6 at rates up to 200 gpm. The water-level data measured in TW3 and TW7 indicate no drawdown as a result of pumping TW6.

TW1, TW2, TW4, TW6 and TW7 were monitored during the simultaneous 72-hour pumping test of TW3 and TW5. The hydrograph for each of these wells show an immediate decline in water level resulting from pumping both TW3 and TW5. The data indicate a maximum drawdown of 66.3 feet in TW6, 34.3 feet in TW4, 23.1 feet in TW7, 4.1 feet in TW1 and 1.4 feet in TW2.

Offsite monitoring wells OW1 through OW8 were monitored during both tests. The hydrograph for each of these wells shows that water levels did not decline during the 72-hour pumping test of TW6 in response to the pumping of TW6. During the test of TW6 the data indicate only minor water-level fluctuations observed probably were caused by pumping for domestic use. During the multiple-well pumping test of TW3 and TW5, . offsite observation wells OW1, OW2, OW3, OW4, and OW6 show no decline in water level resulting from pumping TW3 and TW5. Water levels remained generally stable, with only minor fluctuations. The hydrographs for OW1, OW2, OW3, OW4, and OW6 indicate a gradual decline in water level prior to, during and continuing after testing. Because this minor water-level decline was observed prior to and continued after testing, it is probably the result of a regional trend and not the result of pumping the Gan Eden Estates wells.

During the multiple-well pumping test, hydrographs for OW5, OW7 and OW8 show an immediate gradual decline resulting from pumping of TW3 and TW5. The water level in OW5 generally stabilized at a very slow rate of decline during the last 24 hours of the test. OW7 showed some fluctuation, probably caused by pumping to supply the homeowner's demand. However, the water level in OW7 appeared to be generally declining at a slow rate during the end of the multiple-well test. The data indicate a maximum drawdown of 5.8 feet in OW8, 3.9 feet in OW7 and 1.5 feet in OW5.

During the simultaneous pumping of TW3 and TW5, the observed drawdown in OW5, OW7 and OW8 probably resulted from pumping of TW3 and not TW5. TW3 is approximately 1,200 feet north of OW5, OW7 and OW8. TW5 is located more than 3,000 feet to the north of these observation wells. During the preliminary test of TW5 in December of 1988, no noticeable drawdown was observed in TW3. If drawdown interference effects resulting from pumping TW5 were not measured in TW3, it is likely that no drawdown effect would be observed in any offsite wells at distances greater than that to TW3. In addition, no noticeable drawdown was observed in TW3, TW7 or any of the offsite monitoring wells during the 72-hour pumping test of TW6, which is located approximately 25 feet from TW5. For these reasons, pumping of TW5 is not expected to induce noticeable drawdown in TW3, TW7 or any offsite observation wells.

Any approval by the New York State Department of Health and New York State Department of Environmental Conservation of the proposed water-supply system will be subject to review, and based, in part, on a requirement that no existing water supplies are adversely affected by the proposed community water-supply system. Any nearby users of ground water whose supply is adversely impacted by withdrawals from the Gan Eden Estates water-supply system could be offered a deeper well or a service connection by the developer of the system.

WATER QUALITY

Water samples were collected from TW5 and TW6 near the end of each pumping test. The samples were sent to Envirotest Laboratories, Inc., in Newburgh, New York and analyzed for all constituents required for a community water supply. Envirotest is a New York State Department of Health-certified laboratory. All constituents analyzed were found at level below permissible limits. Water-quality results for both wells are included in Appendix G.

CONCLUSIONS

Based on the results of pumping tests, TW6 has a sustainable yield capacity of 200 gpm and should be used as the primary well source. The simultaneous pumping test of TW3 and TW5 demonstrated that the sustainable yield capacity of TW3 is less than 15 gpm. Because of the low yield of TW3, it is not recommended for development. With a yield capacity of 140 gpm, TW5 is a reliable secondary well source.

The yield capacity of TW6 will meet the NYSDOH requirement for development of double the daily demand of the project. With TW6 out of service, the secondary source, TW5, will be capable of supplying more than 1.7 times the average daily demand of the project.

-10-

Based on the results of the well monitoring program. conducted during the pumping test of TW5 in December of 1988, the pumping test of TW5 and the simultaneous pumping test of TW3 and TW5 in April of 1989, LBG states the following conclusions:

1. Wells TW5 and TW6 should not be pumped simultaneously, except for periods of a few hours to provide emergency supply.

2. Water-level interference observed in TW1, TW2, TW4 and TW7 is of no concern because these wells will be abandoned and grout sealed after obtaining local and state approvals for the Gan Eden Estates project.

3. Drawdown of less than 6 feet was measured in offsite observation wells OW5, OW7 and OW8 at the end of the 72-hour simultaneous pumping test of TW3 and TW5. The data indicate that the drawdown was likely the result of pumping TW3, and not TW5. TW3 is no recommended for development and will be properly abandoned and grout sealed.

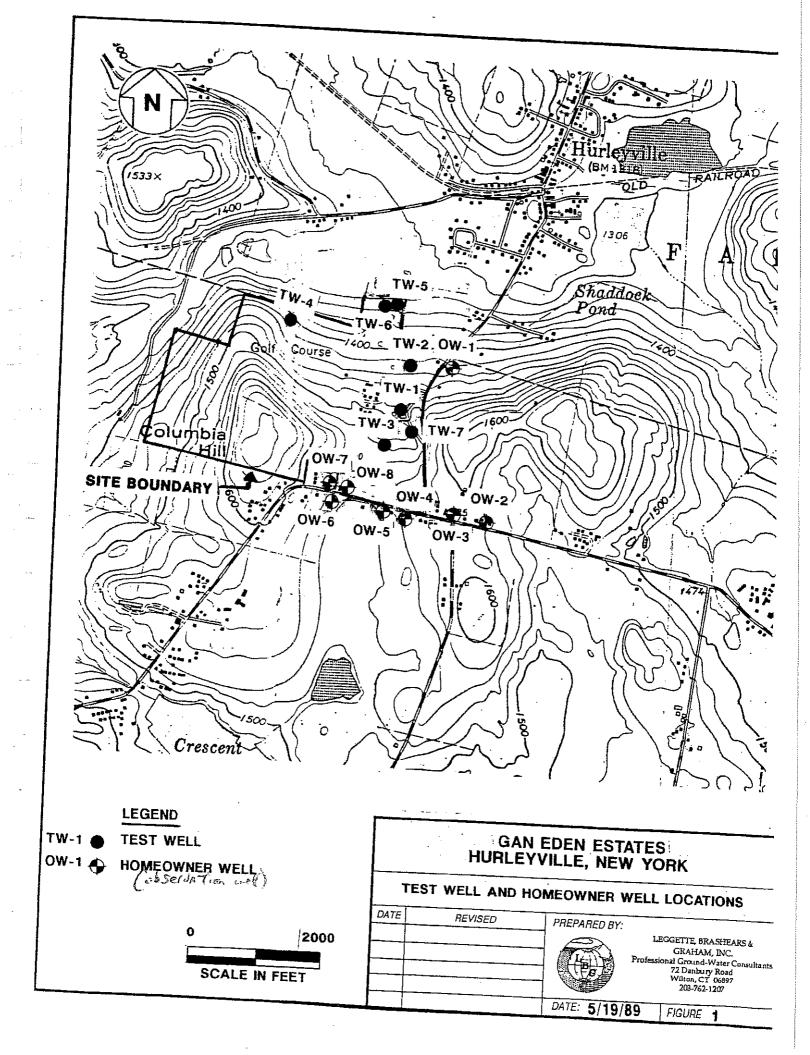
4. Each of the offsite wells monitored is recommended to be monitored semiannually when TW5 and TW6 go on-line.

LEGGEZTE BRASHEARS & GRAHAM, INC.

Thomas P. Cusack Senior Hydrogeologist

David Scott, CPG Associate

Reviewed by:


R. G. Slayback CPG President

gmm October 17, 1989 89ganedn -11-

LEGGETTE, BRASHEARS & GRAHAM, INC.

FIGURE

LEGGETTE, BRASHEARS & GRAHAM, INC.

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Estimated Water Demand

Type of unit	Number/Size of units	Number of persons per unit ^{1/}	Gallons per day per person (gpd)갈	Average daily demand (gpd)
Patio				
Homes (attached)	72 2.5 bedroom*	3	75	16,200
Townhouses	313 2.5 bedroom*	3	75	70,425
Semi-attach	ed			
Homes	30 2 bedroom	2.5	75	5,625
Single-fami]	ly			
Homes (detached)	29 4 bedroom	5	75	10,875
Apartments	72 2 bedroom	2.5	75	13,500
			TOTAL:	116,625

* Estimated average,

NYSDOH guidelines.
 Assumes each comuti

Assumes each service connection is individually metered.

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Test Well Data

Cest Well (TW)	Borehole Diameter (inches)	Depth (feet)	Preliminary Yield (gpm)
1 2 3 4 5 6	6 6 6 6 8	604 750 520 604 380 460	15 10 30 5 175 to 200 300+

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Offsite Monitoring Well Data

ell ID	Well Owner	Well Depth (feet)	Pump Setting (feet)
OW1	Rodriguez	250	NA
OW2	Goar	600	450
OW3	Lounsbury	240	200
OW4	Crawford	NA	NA
OW5	Gohl	125	NA
OW6	Abraham	NA	NA
OW7	Halister	NA	NA
OW8	Halister	NA	NA

NA = not available.

Leggette, Brashears & Graham, Inc

APPENDIX A

	LUV		OWNER
LEGGETTE, BRASHEAR	S&G	RAHA	M. INC.
CONSULTING GROUND-W	ATER G	EOLOG	31878
72 DANBURY			WELL NO TOCALLEL
WILTON, CT.	04493	,	WELL NO. TESTWENS
		IN FEET	DATE PAGE / OF / TH
	FROM	TO	DATE PAGE / OF / PA
LOCATION GAN EDEN ESTATE	3 0'	16'	P.A.
			Clayer silt and grand
HURLEY VILLE NY	0'	40'	6" dia. CASING DRIVER INTO
DATE DATE		† 	OTH. LASING DRIVEN INTO
CONFLETED MArch 1969			LOMPETENT LOCK
COMPANY EASTERN Drilling	1/-	04	
CAPILON Drilling	16-	390	interbedded gray siltstme, 1
METHOD AIR ROTARY			Judy Dutstine 11
			Shale
METHOD WASH CUTING			
11 LUDI 24	1		
EXAMINED BY TOM CUSACK			had a to a to a
REFERENCE			knehole terminated at 350'
POINT Grade level			
ELEVATION OF R.P.			
WELL CONSTRUCTION	┟╌━╌╍┯┼╴		Mayer water bearing zone
TYPE hone			- gant
DIAMBLOT NO	.		· · · · · · · · · · · · · · · · · · ·
SETTING			
GRAVEL PACK			
8iZE			
CASING GINCH dia driven			
INTO LUMPETENT ROLL			
DEVELOPMENT AK			
PUMPING TEAT			
DATE (1pril 24-27, 1989			
OURATION 72-hour			
		<u> </u>	
STATIC WATER Coils feet			
LEVEL 82.05 feet			
140			
YIELD I'V GPM			
REMARKS.			
			·
		1	
	<u>l</u>		

....

.

--

. ..

_

-

--

-

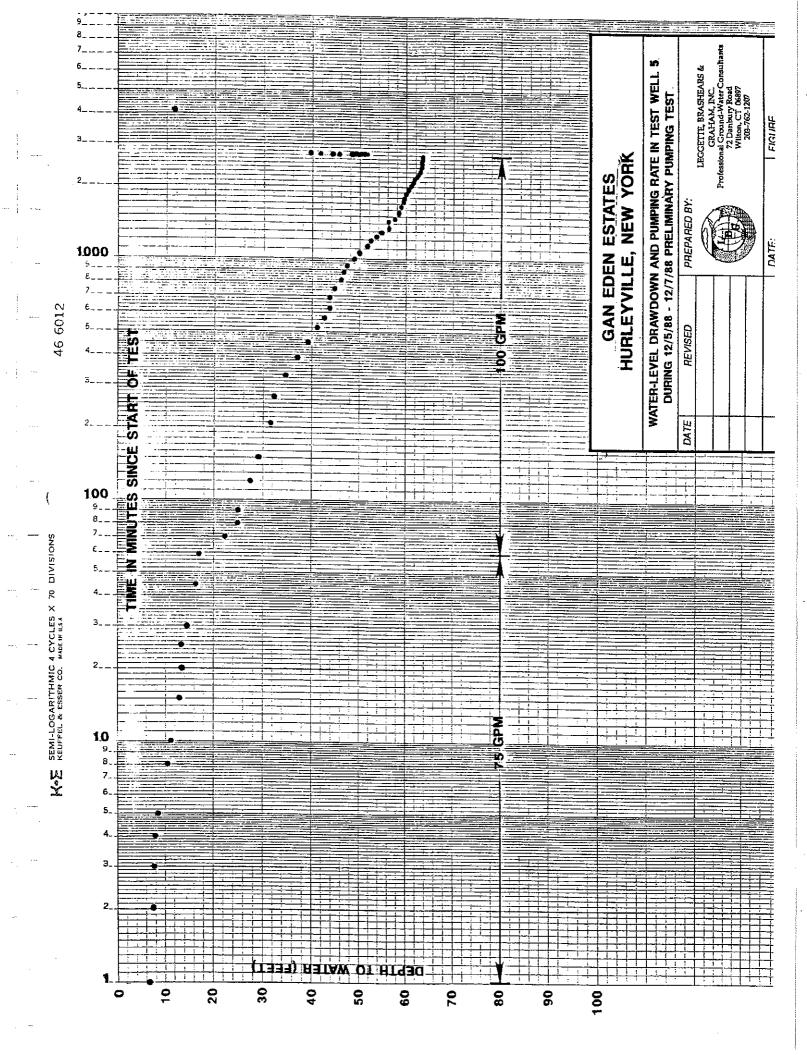
	LUG	OWNER ON EVEN E
LEGGETTE, BRASHEAR	S & GRAHA	MINO
CONSULTING GROUND-W	ATER GEOLOG	31878
72 DANBURY	ROAD	WELL NO. TEST WELL
WILTON, GT.	06897	
	DEPTH IN FEET	DATE PAGE OF
Inter FOGAL THE	FROM TO	
LOCATION GAN EDEN ESTATES	0-16'	Clayey self and gravel
HURLEY VILLE NY	0'- 10'	inch diameter outside
COMPLETED 91988	0-401	City Dusing
DRILLING		Sinch diameter CASING
COMPANY Eastern WELL PRILLIN	0-401	growt SEAL
METHOD AIR ROTARY	16' 460'	
METHOD WASH CUTTING		interhedded gray sietstme, red.
SAMPLES EXAMINED BY TOM LUSACK		
REFERENCE Grady level		burchole terminated at y
ELEVATION OF R.P.		
WELL CONSTRUCTION Screen		maps water bearing an
TYPE NONE		
DIAMSLOT NO		·
3ETTING		
GRAVEL PACK		
BIZE		
King King har and		
CASING SINCH dia CASING driven an grouted in place	<u> </u>	
DEVELOPMENT AIR		
		
PUMPING TEST		
DATE april 17-20, 1989		·
DURATION 72-hour		
BTATIC WATER 2.46 Lect		
PILADING WATER		
LEVEL 114.25		
VIELD200gpm		
REMARKS		

•

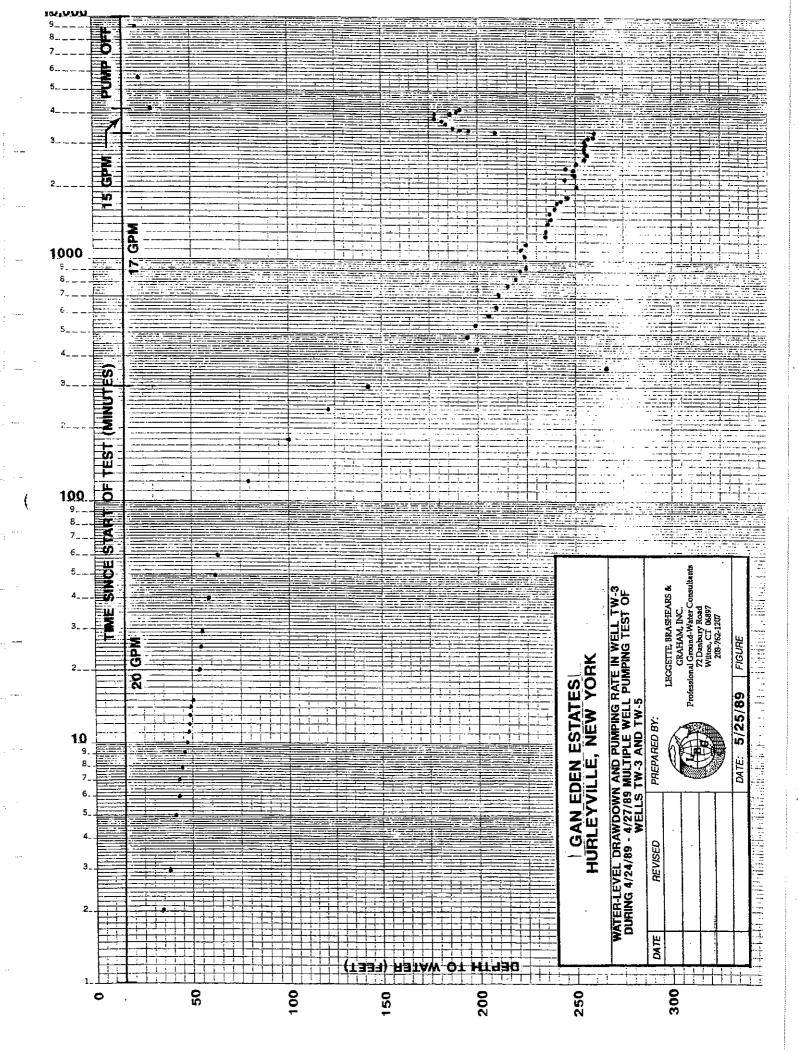
		L		OWNER
LEGGETTE, BRASHEARS	S & G	RAHAI	M, INC.	
CONSULTING GROUND-W	ATER G	EOLOG	HSTS	
72 DANBURY				WELL NO. TEST WELL3
WILTON, CT.	06897	7		
	DEPTH	IN FEET		DATE PAGE / OF / PA
	FROM	то		
LOCATION GAN EDEN ESTATES	6	10'	till	material
HULLEYVILLE NY	0	40'	CASIA	of installed
COMPLETED 8 1949	10	520'	intert	edded gray sielstone, red shale
COMPANY BILL BOWERS				
DRILLING AIK LOTARY	<u> </u>		bore	hole terminated at 500'
SAMPLING METHOD WASH CUTTINGS				
SAMPLES Examined By			ma	for water pearing gone
POINT Grade level				
ELEVATION OF R.P.				
WELL CONSTRUCTION Screen				
TYPE NONP				
DIANSLOT NO				
\$ETTING				
GRAVEL PACK BIZE				
CASING 40 feet 6 Inch diA.				
CASING DRIVEN INTO COMPETENTROCK				
DEVELOPMENT				
PUMPING TEST				
DATE Cyril 24-27, 1489				
DURATION 70 hour			······	
STATIC WATER 21.0 feet				·
PUMPING WATER 191 feet				
VIELD 15 gan PUMPING				
PUMPING REMARKS. Water-level				· · · · · · · · · · · · · · · · · · ·
WAS Not stabilized				
				

. .

...


----]

:


...

--

APPENDIX B

APPENDIX C

APPENDIX D

GAN EDEN ESTATES Hurleyville, new york

Water-Level Data Well TW-5 72-Hour Pumping Test April 24 - 27, 1989

Date	Hour	Depth to Water (feet)	Time in minutes since start of tes	
04-24-89	1200		0	pump on 125 gpm
	1201		1	
	1202	18.04	2	
	1203	18.69	3	
	1204	19.07	4	
	1205	19.64	5	
	1206	20.16	6	
	1207	20.53	7	
	1208	20.35	8	
	1209	20.47	9	
	1210	20.70	10	
	1211	20.95	11	
	1212	21.14	12	
	1213	21.39	13	
	1214	21.58	14	
	1215	21.78	15	
	1220	22.78	20	
	1225	25.32	25	
	1230	26.05	30	
	1235	26.87	35	
	1240	27.75	40	
	1245	28.42	45	
	1250	28.62	50	
	1255	29.14	55	
	1300	29.42	60	
	1350	33.72	110	
	1450	35.70	170	
	1600	38.38	240	
	1650	40.22	290	
	1745	41.03	345	
	1855	42.88	415	
04-24-89	2000	37.97	460	125 gpm

114 V L

·----

7

•••

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Water-Level Data Well TW-5 72-Hour Pumping Test April 24 - 27, 1989

Date	Hour	Depth to Water (feet)	Time in minutes since start of test	Remarks
04-24-89	2105	39.07	525 1:	25 gpm
	2200	49.00	580	
	2255	49.50	635	
04-25-89	0020	50.93	720	
	0115	51.59	775	
	0215	52.31	835	,
	0310	53.57	890	
	0410	53.88	950	
	0545	54.74	1045	
	0650	55.53	1110	
	0845	56.73	1245 1:	25 gpm
	0945			0 gpm
	1000	60.92	1320	
	1135	63.02	1415	
	1230	64.61	1470	
	1355	65.77	1555	
	1525	67.14	1645	
	1710	68,56	1750	
	1955	70.03	1915	
	2133	70.84	2013	
	2255	71.14	2095	
04-26-89	0039	72.43	2199	
	0208	73.26	2288	
	0340	73.65	2380	
	0500	74.36	2460	
	0620	74.80	2540	
	0812	75.52	2655	
	0925	76.10	2725	
	1110	76.70	2830	
	1235	77.15	2915	
	1410	77.70	3010	
04-26-89	1530	78.07	3090 14	⊧0 gpm

····· į

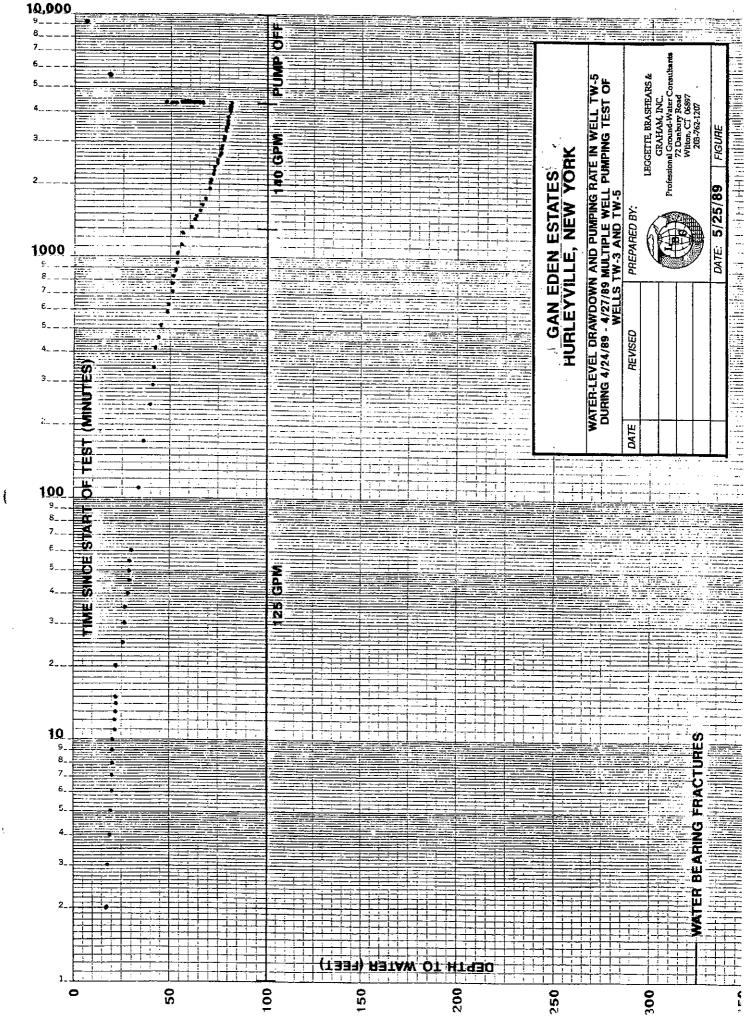
····

· · · · ·

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Water-Level Data Well TW-5 72-Hour Pumping Test April 24 - 27, 1989

Date	Hour	Depth to Water (feet)	Time in minutes since start of test	
04-26-89	1715	78,47	3195	140 gpm
	1905	78.97	3305	51
	2100	79.49	3420	
	2220	79.73	3500	
04-27-89	0010	80.10	3610	
	0150	80.40	3710	
	0320	80.76	3800	
	0500	80,90	3900	
	0625	81.25	3985	
	0725	81.37	4045	
	0825	81.70	4105	
	0925	81.77	4165	
	1025	81.81	4225	
	1140	82.00	4300	
	1200	82.05	4320	Pump off
	1201	66.09	4321	Recovery
	1202	64.67	4322	*
	1203	63.43	4323	
	1204	62.39	4324	
	1205	61.55	4325	
	1206	60.79	4326	
	1207	60.29	4327	
	1208	59.69	4328	
	1209	59.13	4329	
	1210		4330	
	1211	58.17	4331	
	1212	57.77	4332	
	1213	57.42	4333	
	1214	56.92	4334	
04-27-89	1215	56.71	4335	Recovery


(continued)

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Water-Level Data Well TW-5 72-Hour Pumping Test April 24 - 27, 1989

Date	Hour	Depth to Water (feet)	Time in minutes si start of t	nce
04-27-89	1225	53.43	4345	Recovery
	1235	51,56	4355	
	1245	50,00	4365	
	1300	47.80	4380	
04-28-89	1000	17.29	5640	
04-30-89	1935	6.77	9095	
05-01-89	1610	4.86	10330	

ł. .

APPENDIX E

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

Water-Level Data Well TW-6 72-Hour Pumping Test April 17 - 20, 1989

.

7 ---

× ...

<u> -</u>

Date	Hour	Depth to Water (feet)	Time in minutes sin start of te	
04-17-89	1130	2,46	0	
	1200		1	pump on 150 gpm
	1202	10.46	2	
	1203	10.67	3	
	1204	12.06	4	
	1205	12,32	5	
	1206	12.62	6	
	1207	12.91	7	
	1208	13.32	8	
	1209	13.63	9	
	1210	14.38	10	
	1211	14.77	11	
	1213	15.66	13	
	1214	16.04	14	
	1215	16.30	15	
	1220	17.67	20	
	1225	18.69	25	
	1226	~ -	26	200 gpm
	1230	20.49	30	2 2 312 11
	1235	24.18	35	
	1240	26.77	40	
	1245	28.50	4.5	
	1250	28.98	50	
	1255	30.00	55	
	1300	31.12	60	
	1315	33.89	75	
	1330	36.05	90	
	1400	39.19	120	
	1430	42.02	150	
	1510	45.45	190	
	1605	49.75	245	
04-17-89	1705	54.50	305	200 gpm

GAN EDEN ESTATES Hurleyville, New York

Water-Level Data Well TW-6 72-Hour Pumping Test April 17 - 20, 1989

--:--

Date	Hour	Depth to Water (feet)	Time in minutes since start of test	9	emarks
04-17-89	1800	57.70	360	200 g	
	1929	61.91	449	200 3	31-10
	2050	65.10	530		
	2155	67.46	595		
	2300	69.65	660		
	2355	71.05	715		
04-18-89	0125	73.60	805		
	0220	75.05	860		
	0330	76.61	930		
	0450	78.35	1010		
	0545	80.04	1065		
	0655	81.87	1135		
	0820	83.48	1220		
	0950	86.35	1310		
	1110	87.99	1390		
	1225	89.36	1465		
	1400	90,92	1560		
	1510	92.31	1630		
	1625	93.38	1715		
	1815	95.15	1815		
	1935	96.72	1895		
	2110	97.42	1990		
	2245	98.38	2085		
04-19-89	0020	99.33	2180		
	0150	100.31	2270		
	0400	101.85	2400		
	0605	103.05	2525		
	0920	104.59	2720		
	1050	105.09	2810		
	1225	106.09	2905		
04-19-89	1350	106.78	2990	200 g	p m

.....

ł

÷

. . ..

.

....-

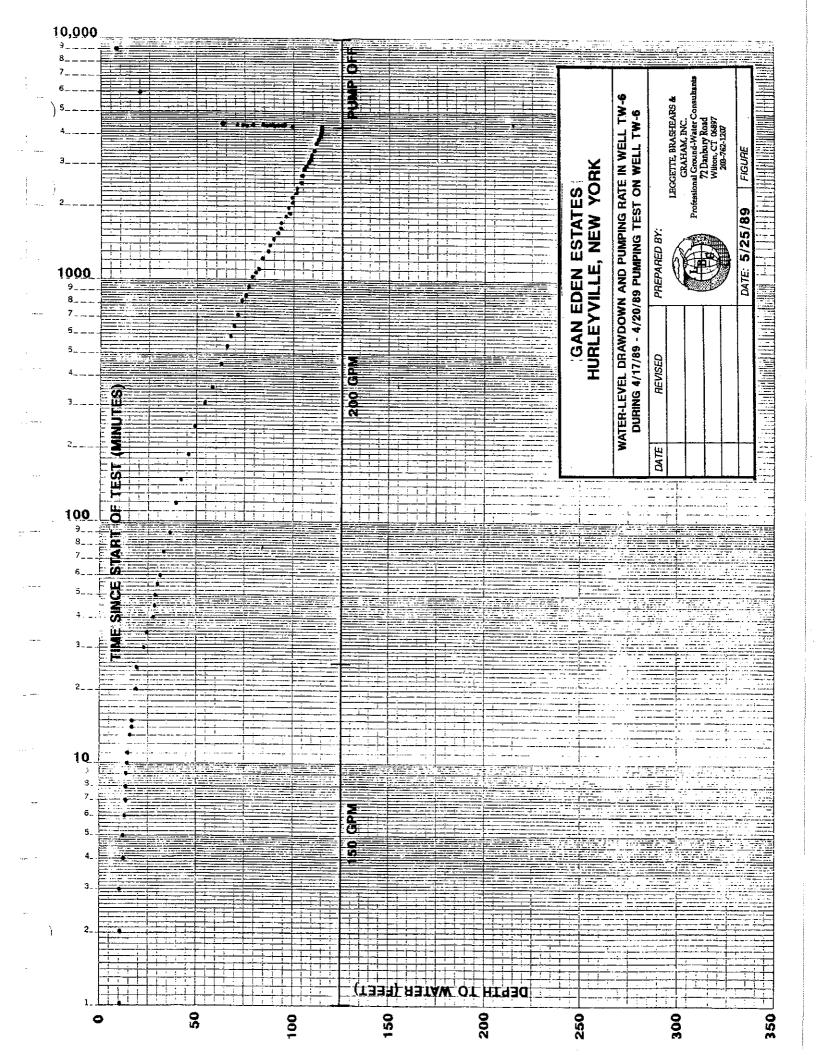
GAN EDEN ESTATES Hurleyville, new york

Water-Level Data Well TW-6 72-Hour Pumping Test April 17 - 20, 1989

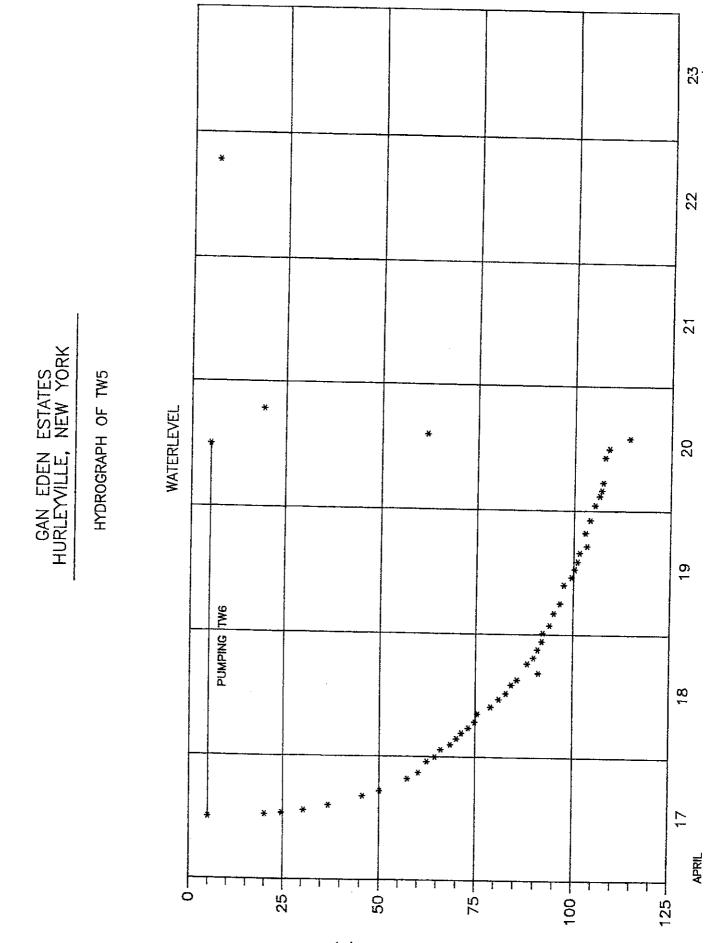
Date	Hour	Depth to Water (feet)	Time in minutes si start of t	nce
04-19-89	1530	107.70	3090	200
	1700	108.37	3180	200 gpm
	1930	109.44	3330	
	2200	110.75	3480	
04-20-89	0100	111.91	3660	
	0240	112.40	3760	
	0350	112.76	3870	
	0520	113.19	3966	
	0700	113.52	4020	
	0800	113.92	4080	
	0900	114.23	4140	
	1010	114.19	4210	
	1100	114.29	4270	
	1200	114.25	4330	shut down
	1201	99.10	4331	Recovery
	1202	95.80	4332	Keester y
	1203	93.88	4333	
	1204	92.20	4334	
	1205	91.20	4335	
-	1206	90.00	4336	
	1207	89.00	4337	
	1208	88,10	4338	
	1209	87.30	4339	
	1210	86.70	4340	
	1211	86.05	4341	
	1212	86.45	4342	
	1213	85.00	4343	
	1214	84.45	4344	
	1215	83.75	4345	
	1225	78.40	4355	
4-20-89	1235	76.19	4365	Recovery

ł

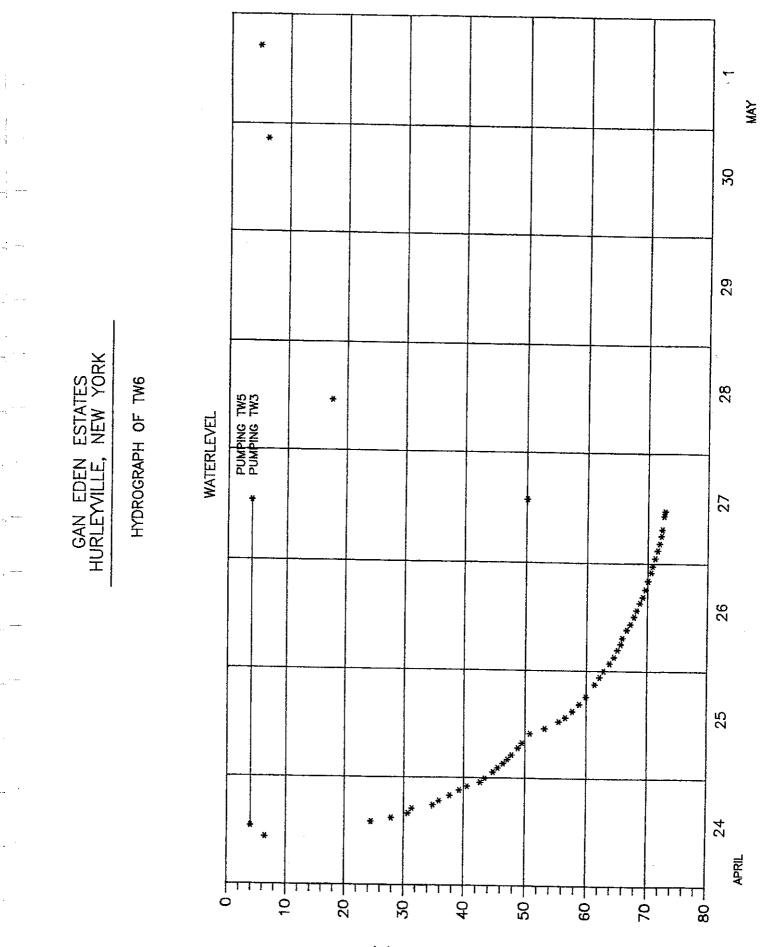
.


.

:


GAN EDEN ESTATES Hurleyville, new york

Water-Level Data Well TW-6 72-Hour Pumping Test April 17 - 20, 1989


Date	Hour	Depth to Water (feet)	Time in minutes since start of test	
04-20-89	1245	73.68	4375	Recovery
	1255	71.42	4385	
	1350	63.01	4440	
04-21-89	1420	20.22	5900	
04-23-89	1850	7.64	9070	

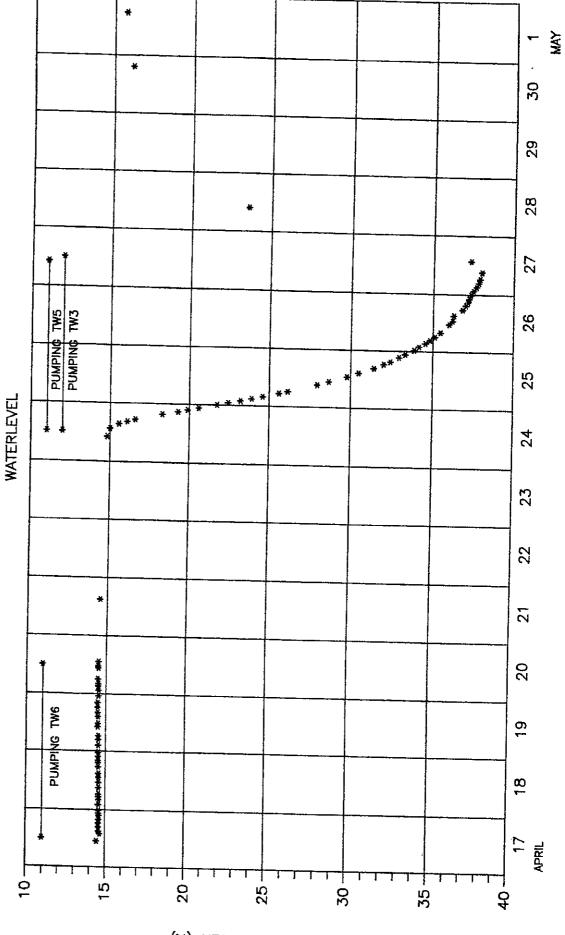
APPENDIX F

DEPTH TO WATER (ft)

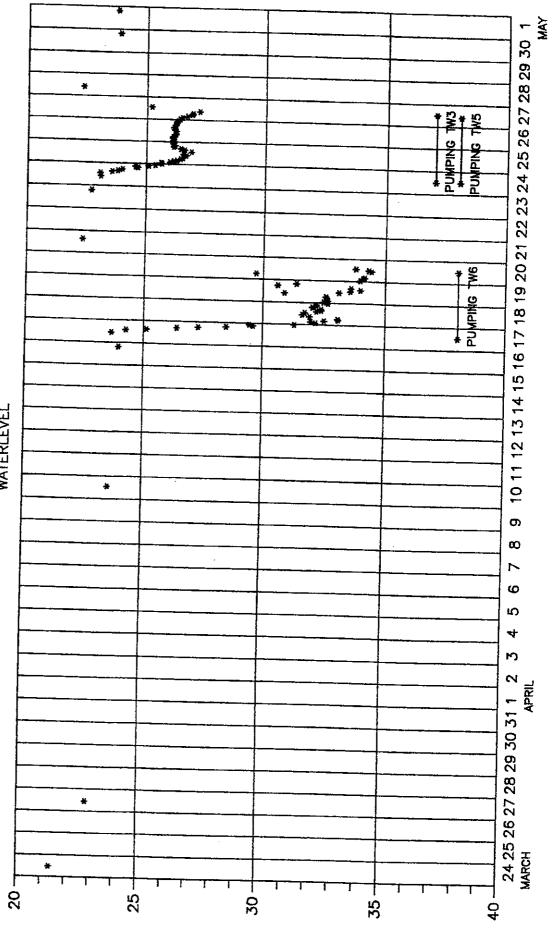
. ---;

(#) AETAW OT HTGEQ (#)

GAN EDEN ESTATES HURLEYVILLE, NEW YORK


1

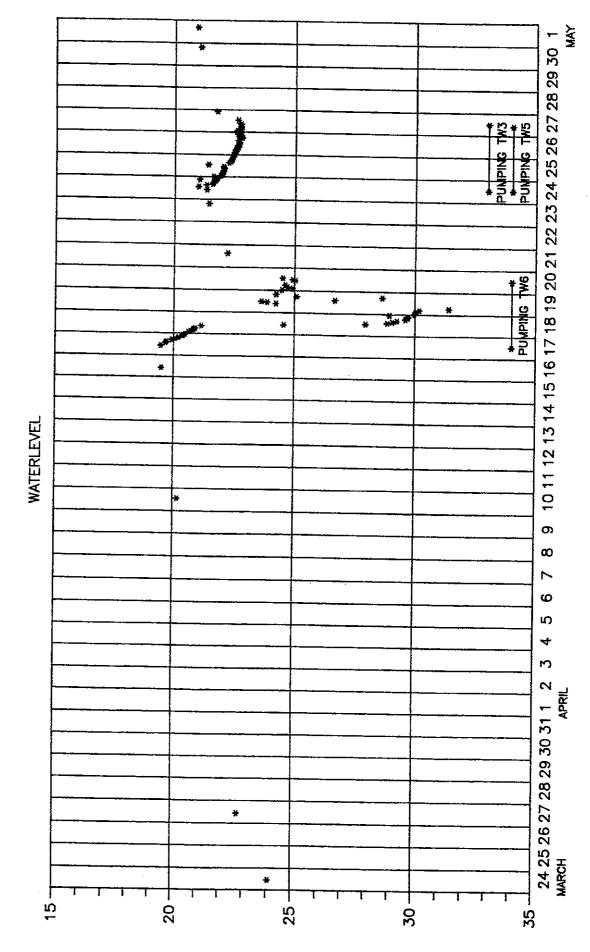
1.


1 -

Ţ...

. . HYDROGRAPH OF TW7

(#) AETAW OT HTGEG

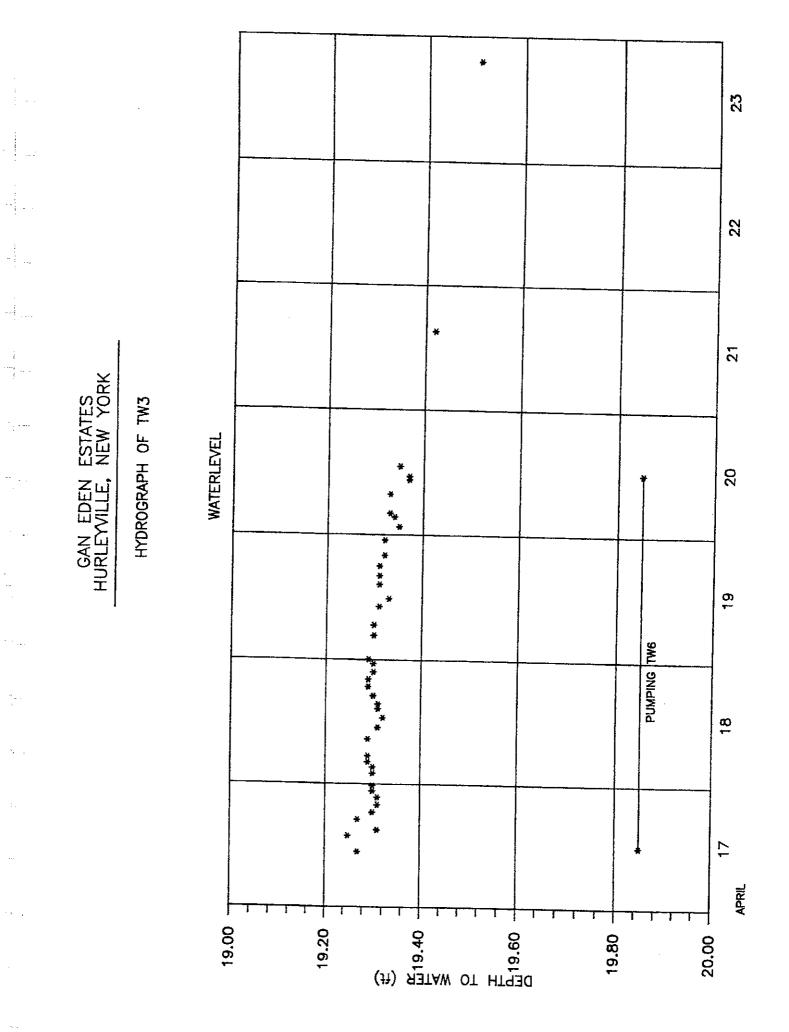


GAN EDEN ESTATES HURLEYVILLE, NEW YORK

HYDROGRAPH OF TW1

WATERLEVEL

DEPTH TO WATER (ft)




GAN EDEN ESTATES HURLEWILLE, NEW YORK

---- HYDROGRAPH OF TW2

(#) AATER (#)

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

.

, ...-

HYDROGRAPH OF TW4

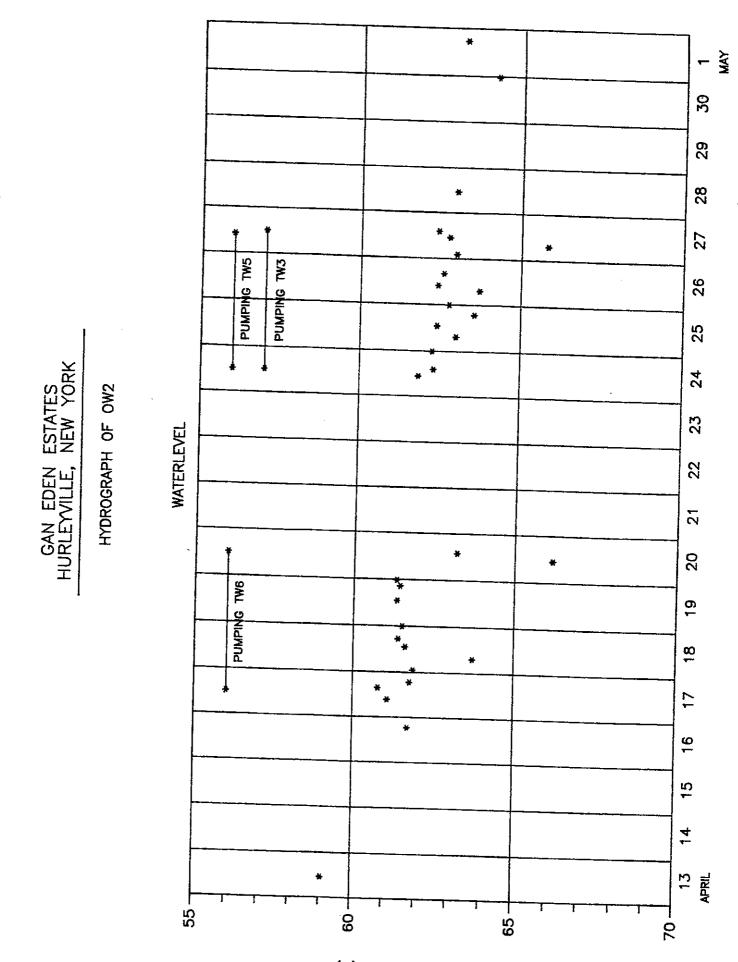
WATERLEVEL

¥ 1 MAY 0 M 29 28 ¥ * 27 PUMPING TW5 PUMPING TW3 26 * ¥ 25 ŧ * 24 ¥ 23 WATERLEVEL 22 ¥ 2 ž 20 * PUMPING TW6 19 1 *** 2 ** 17 * 10 <u>ບ</u> 14 13 APRIL ŧ 30 -35 – 4 1 45 -T 50

HYDROGRAPH OF OW1

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

-

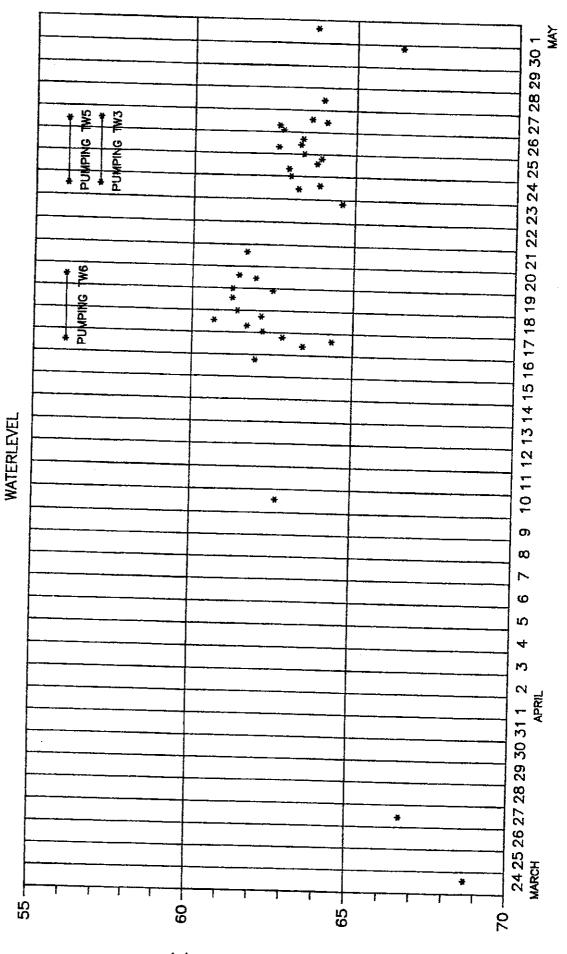

.

··· .--

1

t e

(#) AETAW OT HTGER (#)

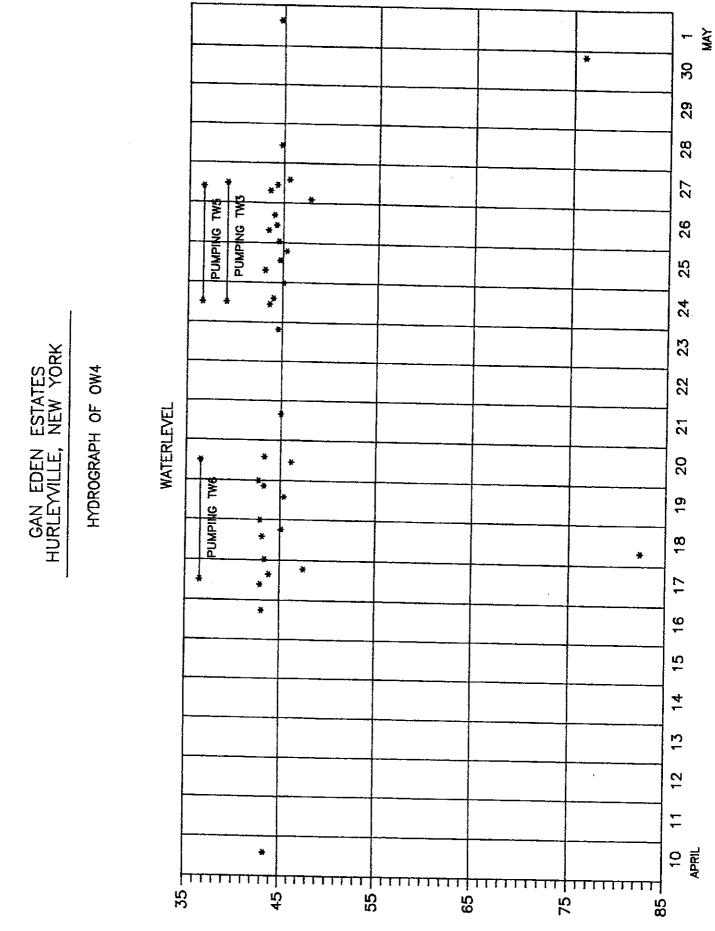

ŧ

.

· · -

î...

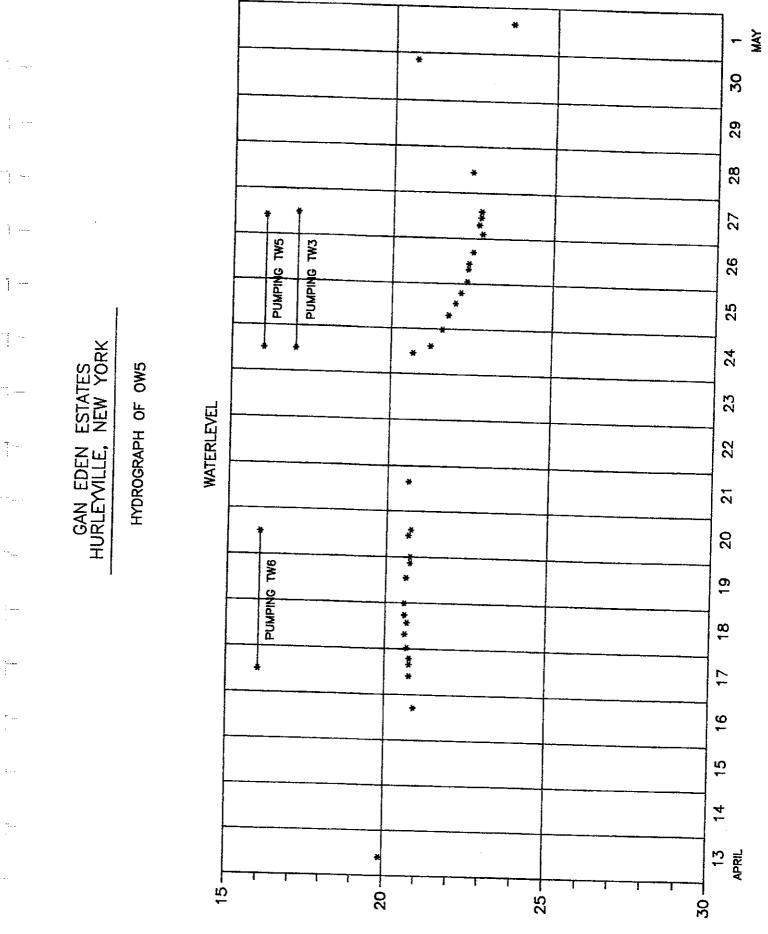
(#) AJTAW OT HT930


4

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

.

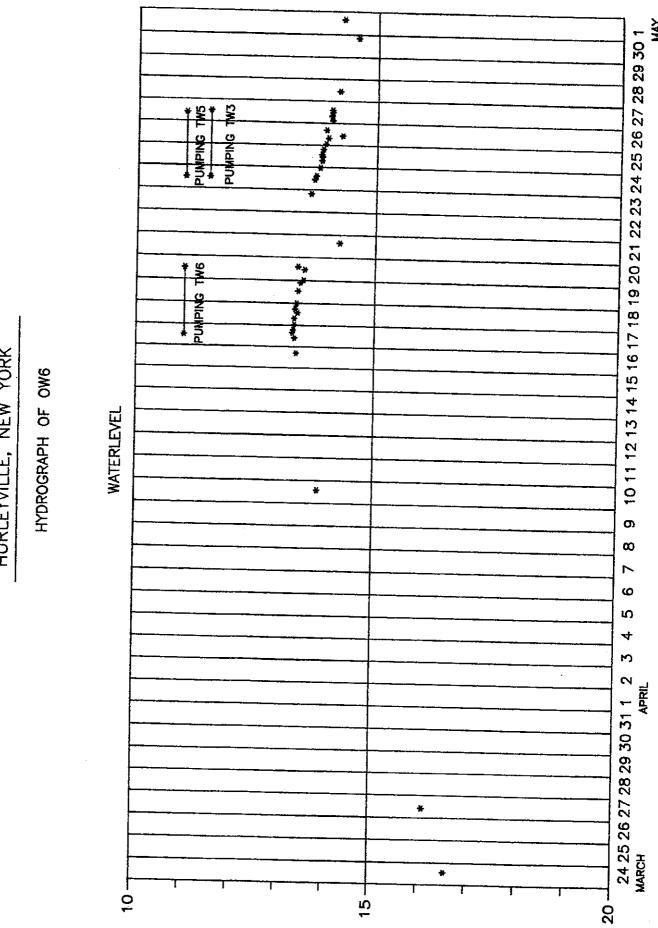
HYDROGRAPH OF OW3


DEPTH TO WATER (ft)

· į ...

. . .

(#) AETAW OT HIGER (#)

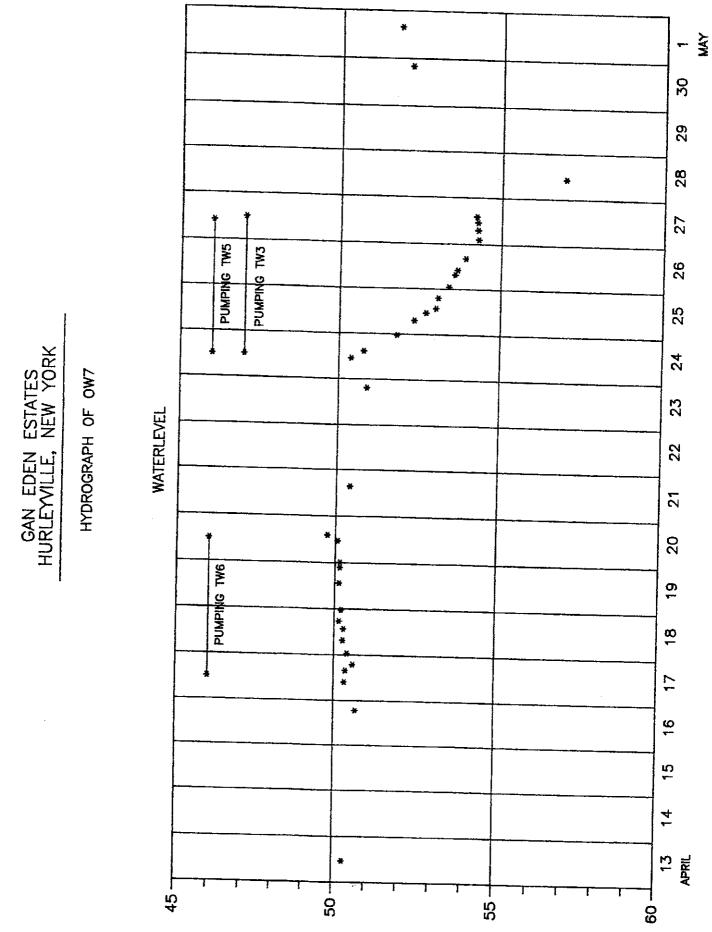


р<u>ан</u> Н

*:---

(#) AATER (#)

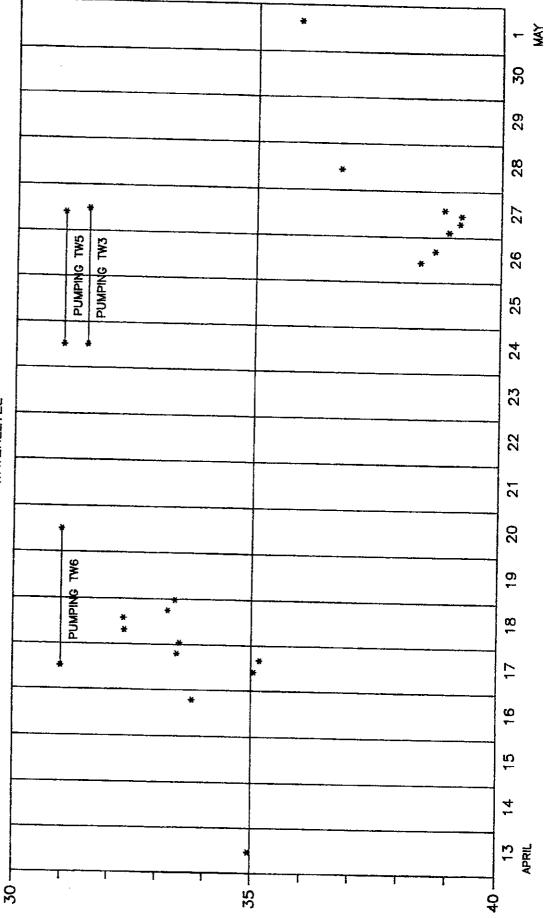
.



DEPTH TO WATER (ft)

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

.....


MAY

---- -----

··· : ----

(#) AETAW OT HTGER (#)

HYDROGRAPH OF OWB

GAN EDEN ESTATES HURLEYVILLE, NEW YORK

.....

;

WATERLEVEL

(#) MATER (#)

APPENDIX G

LEGGETTE, BRASHEARS & GRAHAM, INC.

	InviroTest 1		ىرىمىغ مىدىك ئىت ھەرھە يەرىكى ئۇرا ئۇر يەر ھەر مۇرغۇ بۇر ئۇرۇر يۇرى كەرھە	315 Fullerton Avent Newburgh, NY 1255 (914) 562-0890 Fax (914) 562-0841
STREE STREE STREE STREE STREE			DATE COLL'D FNAME: CITY:	: 88/12/07 STATUS: Close: STATE: ZIP:
F NO3 1 02 7-PO4 0-PO4	: : 11 : :	Cr+5 : Phenol: CN : B : Br : Color : 5.0 P Odor : 1 Turb : 6.4 tu PH : 7.5 LI : -1.49 Cond : NH3-T : TKN :	COD HARD-† Ca Harc SO3 C1 f-C0 Alk BOD-Inf	- - - - - - - - - - - - - -
VSS 5 TDS 5 SOL 6 & O ^1 b As Ba 9 d	; 210 210 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ca : Cr : <0.01 Co : Cu : <0.01 Au : Fe : 0.03 Pb : <5.0 u Mg : Mn : 0.03 Hg : <0.4 u Mo : N1 : Pd :	Ag : Na : Tl : Sn : g/l T1 : V : Zn :	<2.0 ug/1 <0.01 28

Remarks: All results in mg/l unless otherwise indicated.

Ronald A. Bayer

Laboratory Director

12/23/88

New York State Department of Health Approved

PESTICIDE/HERBICIDE ORGANICS ANALYSIS DATA SHEET

1

. .

-

	Client Name: LBG/Kahane		Lab Number: 710	41-001
	Project Name: #1272		Date Collected:	
	Sample Location: TW5 Matrix: Water		Date Received:	12/7/88
	Method: Std Methods 509 A&B		Date Extracted: (Petsticide)	12/8/88
			Date Analyzed: (Pesticide)	12/8/88
	Report Date: 12/22/88		Date Extracted: (Herbicide)	12/13/88
			Date Analyzed: (Herbicide)	12/20/88
~	NO CONTRACTO	Detection Limit		

			(ucrbicide)				
;	CAS NO.	COMPOUND	Detection Limit ug/1	Conc. ug/l	Data Qualifier		
- <u></u>	58-89-9 72-20-8 72-43-5 8001-35-2	gamma-BHC (Lindane) Endrin Methoxychlor Toxaphene	0.05 0.05 0.50 1.0	· · · · · · · · · · · · · · · · · · ·	U U U U		
	94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	0.05		บ บ บ		

- EnviroTest 🔛 Laboratories Inc

Client Name: Leggette, Brashears & Graham

Project Name:

Sample Location: TW5

Matrix: H20

-

.

Method: EPA 502.1 & 503.1

Lab Number: 71041-001

Date Collected: 12/7/88

Date Received: 12/7/88

Date Analyzed: 12/14/88

Report Date: 12/19/88 Report Date:

I						Report Date) i		
(3 NO.	COMPOUND	Detection Limit ug/l	Conc. ug/1	Data Qualifíer	CAS NO.	COMPOUND	Detection Limit ug/1	Conc. ug/l	Q
71-43-2	Benzene	0.5		U	78-87-5	1,2-Dichloropropane			,
3-86-1	Bromobenzane	0.5		Ŭ	142-28-9	1,3-Dichloropropane	0.5		
- 74-97-5	Bromochloromethane	0.5		Ű	590-20-7	2,2-Dichloropropane	0.5		
75-27-4	Bromodichloromethane	0.5		Ŭ	553-58-6	1,1-Dichloropropane	0.5		
-25-2	Bromoform	0.5		ย	100-41-4	Ethylbenzene	0.5		
i839	Bromomethane	0.5		บั	87-68-3		0.5		
104-51-8	n-Butylbenzene	0.5		Ų	98-82-8	Hexachlorobutadiene	0.5		
j-98-8	sec≂8utylbenzene	0.5		Ŭ	99-87-6	Isopropyl benzene	0.5		
£06-6	tert-Butylbenzene	0.5		IJ	39-81-0 75-09-2	4-Isopropyltoluene	0.5		
‴ 55−23−5	Carbon tetrachloride	0.5		V	91-20-3	Methylene chloride	0.5		
109-90-7	Chlorobenzene	0.5		Ŭ		Naphthalene	0.5		
° -003	Chloroethane	0.5		U		n-Propylbenzene	0.5		
_ 67-66-3	Chloroform	0.5		U U	100-42-5	Styrene	0.5		
74-87-34	Chloromethane	0.5		U U	630-20-6 70 54 5	1,1,1,2-Tetrachloroethane			
9-49-8	2-Chlorotoluene	0.5		IJ	79-34-5	1,1,2,2-Tetrachloroethane	0.5		
	4-Chlorotoluene	0.5		-	79-01-8	Tetrachloroethene	0.5		
124-48-1	Dibromochloromethane	0.5		U	108-88-3	Toluene	0.5		
5-93-4	1,2-Dibromoethane			Ų	87-61-6	1,2,3-Trichlorobenzene	0.5		
-95-3	Dibromomethane	0.5		U	120-82-1	1,2,4-Trichlorobenzene	0.5		
-95-50-1	1,2-Dichlorobenzene	0.5		U	71-55-6	1,1,1-Trichloroethane	0.5		
5*1-?3-1	1,3-Dichlorobenzene	0.5		U	79-00-5	1,1,2-Trichloroethane	0.5		
5-48-7		0.5		ប	79-01-6	Trichloroschene	0.5		
_15-71-8	1,4-01chlorobenzene	0.5		υ	75-69-4	Trichlorofluoromethane	0.5		
75-34-3	Dichlorodifluoromethane	0.5		U	96-18-4	1,2,3-Trichloropropane	0.5		
	1,1-Dlichloroethans	0.5		ប	\$5-83-6	1,2,4-Trimethylbenzene	0.5		
7-02-2	1,2-Dichlorosthans	0.5		U	108-57-8	1,3,5-Trimethylbenzene	0,5		
	1,1-Dichloroethene	0.5		U	75-01-4	Vinyl chloride	0.5		
156-59-2	cis-1,2-Dichloroethene	0.5		U	\$5-47-5	o-Xylene	0.5		
0-59-0	trans-1,2-Dichlorosthene	0.5		U	108-38-3	m∽Xylene	0.5		
· · ·					106-42-3	p-Xylene	D.5		

RADIOLOGICAL ANALYSIS

LBG/Kahane Lab #71040-001, Order #1272 Sample ID: TW-5

-

-

.....

.....

Sample Received 12/7/88

Parameter	Detection Limit (pci/liter)	Antivity 1-1 1
Gross Alpha	1.4	Activity (pci/liter) 5.4 ± 1.8
Gross Beta	0.8	7.3 ± 1.9
Radium 226	0.2	0.0 ± 0.1
Radium 228	2.0	1.3 ± 1.2

Radiological Analysis by Core Laboratories, Casper, Wyoming.

EnviroTe Laborat	est 🔛 tories Inc.	V	SAMPLE LOG	315 Fullerton A Newburgh, NY (914) 562-0890
TURNAROUN ETL Lab# Company(Name	10 25313 LBG Ltatpe/Hur		$\frac{9}{27/89}$ $\frac{9}{27/89}$ $\frac{9}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	Date Coll'd _ 4/27
Address City Purchase Order	/Project #/	Sta 260	te	r, zip): Kaha
Lab #	Cust. ID	Ana Matrix	lysis Requested Anal	veie
<u> </u>	TW-5	2	TDS, TURE	pidity
	· · · · · · · · · · · · · · · · · · ·			
				·
				·
			· ·	
Comments				
	·		Signature	yc

EnviroTest 2	315 Fullerton Avenu Newburgh, NY 1255 (914) 562-0890 Fax (914) 562-0841
_AB#: 75313-001 DATE REC'D: 89/04/27 LNAME: Atlantic Realty TREET: 90 Woodbridge Center Drive PL LOCATION: same PEPORT TO: same ILL TO: same	ENAME.
T COLI: Cr+6: COLI: Phenol: .PC: CN: F: B: '03: Br: '02: Color: T-P04: Odor: O-P04: Turb: .04: pH: .05: LI: .12: Cond: .25: NH3-T: .H3-C: TKN:	COD : HARD-T : Ca Hard: SO3 : Cl : Alk : BOD-Inf: tu BOD-Eff: BOD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :
'SS : Ca : S : Cr : VS : Co : TDS : 180 mg/l Cu : S : Au : SOL : Fe : G & O : Pb : ib : Mg : ib : Mn : Pa : Mo : icd : Ni :	K : Se : Ag : Na : T1 : Sn : Ti : V : Zn : THM : TOC :

Remarks:

>√

Ronald A. Bayen Laboratory Director

5/3/89

ÉnviroTe Laborat	est 🔛 tories Inc.	1107	SAMPLE LOG	315 Fullerton Aven Newburgh, NY 12: (914) 562-0890
TURNAROUN	ID			
ETL Lab# 7	5128	Dat	e Rec'd _ -20-89</td <td> Date Coll'd 4-20-89</td>	Date Coll'd 4-20-89
-	BG		Phone	Duio con a <u></u>
	Hanti Re	alte		mr. D Kahan
Address <u>90</u>	Wood 6-	idge &	(+ Dr.	
city 100	odbridg.	\ 1		zip 07095
Purchase Order,			# 1260	Zip Zip
	· · · · · · · · · · · · · · · · · · ·			
		An	alysis Requested	
Lab #	Cust. ID	Matrix		Analysis
	TW-6	Water	NYS/PRI/Sec 1	EColi, T.Coli, Herb/Re:
				1,504 RAdio
·			CAlpha Beta:	
<u></u>				
· · · ·				
		_	·····	
<u> </u>				
Comments				
····				
			Signature	Pare-
			Date//////	Time 1

•

....

. -----

. ---

. - - -

EnviroTest 2

315 Fullerton Avent Newburgh, NY 1255 (914) 562-0890 Fax (914) 562-0841

	: 75128-001 DATE RE E: Atlantic Realty ET: 90 Woodbridge C LOCATION: Kahane #1	tr Drive	FNAME:		89/04/20 STATE:	
ILL T COL GPC F 103 102 T-P04 0-P04 i04 i04 si02 12S	LI: <2/100 m I: <2/100 m : : <0.2 : 0.23 : : : : 9.3 : :	Cr+6 : Phenol: CN : B : Br : Color : 10 P Odor : 1 Turb : 1.2 pH : 7.6 LI : -1.0 Cond : NH3-T :	t-Co tu 3	Alk : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: TSS-Eff:	35	
IH3-C 'SS S VS TDS SS SOL G & O J J B As Sa 3e Cd	: : : 100 :	TKN : Ca : Cr : <0.0 Co : Cu : <0.0 Au : Fe : 0.04 Pb : <5.0 Mg : Mn : 0.01 Hg : <0.4 Mo : Ni : Pd :	۲ ۱ ۱ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	Ag : · Na : : T] : Bn : T] : (:	<5.0 ug/] <0.01 33	

Remarks: All results in mg/l unless otherwise indicated. Results show sodi was above the recommended level for low sodium diet. All other results reporte on this sheet are within NY State Drinking vater Standards.

U 101

Ronald A. Bayer Laboratory Director

5/4/89

Client Name: Leggette, Brashears & Graham

Project Name: Atlantic Realty

Sample Location: Kahane TW-6

Matrix: H20

.

- - 3

Method: EPA 502.1 & 503.1

Lab Number: 75128-001

Date Collected: 4/20/89

Date Received: 4/20/89

Date Analyzed: 5/1/89

Date Reported: 5/4/89

CAS NO.	COMPOUND	Detection Limit ug/l	Conc. ug/1	Data Qualifier	CAS NO.	COMPOUND	Detection Limit ug/1	Conc. ug/l	I
71-43-2 108-86-1 4-97-5 75-27-4 75-25-2 14-83-9 104-51-8 135-98-8 18-96-5 -16-23-5 108-90-7 75-003 57-66-3 74-87-34 95-49-8 106-43-4 124-48-1 106-93-4 74-95-3 -35-50-1 541-73-1 106-46-7 75-71-8 75-34-3 107-02-2 590-20-7 75-35-4 156-59-2 540-59-0	Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorothane Chloroform Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorothane 2,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	0.5 0.5			78-87-5 142-28-9 590-20-7 563-58-6 100-41-4 87-68-3 98-82-8 99-87-6 75-09-2 91-20-3 103-65-1 100-42-5 630-20-6 96-18-4 79-34-5 79-01-6 108-88-3 87-61-6 120-82-1 71-55-6 79-00-5 79-01-6 75-69-4 96-18-4 95-63-6 108-67-8 75-01-4 95-47-6 108-38-3 106-42-3	<pre>1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropyl benzene 4-Isopropyltoluene Methylene chloride Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane 1,1,2,2-Tetrachloroethane Ictrachloroethene Toluene 1,2,4-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,5-Trichloroethane 1,2,4-Trichloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride 0-Xylene m-Xylene</pre>	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		,

VOLATILE ORGANICS ANALYSIS DATA SHEET

Client Name: LBG/Atlantic Realty	
Project Name: Kahane #1260	Lab Number: 75128-001
Sample Location: TW-6	Date Collected: 4/20/89
Matrix: Water	Date Received: 4/20/89
Method: EPA 504	Date Extracted: 4/25/89
	Date Analyzed: 5/22/89
	Report Date: 6/1/89

	CAS NO.	COMPOUND	Detection Limit		
	106-93-4 96-12-8	1,2-Dibromomethane 1,2-Dibromo-3-chloropropane	ug/1 0.02	Conc. ug/1	Data Qualifier
		-1 Obaue	0.02		U
_					U

PESTICIDE/HERBICIDE ORGANICS ANALYSIS DATA SHEET

Client Name: LBG/Atlantic Realty Lab Number: 75128-001 Project Name: Kahane #1260 Date Collected: 4/20/89 Sample Location: TW-6 Date Received: 4/20/89 Matrix: Water Date Extracted: 4/24/89 Method: Std Methods 509 A&B (Petsticide) Date Analyzed: 4/24/89 (Pesticide) Report Date: 5/9/89 Date Extracted: 4/27/89 (Herbicide) Date Analyzed: 5/8/89

CAS NO.	COMPOUND	Detection Limit ug/l	Conc. ug/l	Data Qualifier
58-89-9 72-20-8 72-43-5 8001-35-2	gamma-BHC (Lindane) Endrin Methoxychlor Toxaphene	0.05 0.05 0.50 1.0		U U U U U
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	0.05 0.05		ប ប

(Herbicide)

_ Enviroïest 🔛 Laboratories Inc.

LABORATORY TESTS RESULTS 05/09/89 JOB NUMBER: B91414 CUSTOMER: ENVIROTEST LABORATORIES INC. ATTN: DOUG TAWSE SAMPLE NUMBER:0001 DATE RECEIVED:04/24/89 TIME RECEIVED:08:43 SAMPLE DATE:04/24/89 PROJECT ID:P.O. 3128 SAMPLE TIME:08:43 SAMPLE ID:75128-001 REM: TEST DESCRIPTION FINAL TEST RESULT UNITS OF MEASURE Gross Alpha, dissolved TEST METHOD DATE 0.0 pCi/l EPA 900.0 Gross Alpha, diss., error, +/-05/08/89 DM 1.3 pCi/l Gross Alpha, diss., LLD 05/08/89 DM 1.0 pCi/l Gross Beta, dissolved 05/08/89 DM 0.0 pCi/l EPA 900.0 Gross Beta, diss., error, +/-05/08/89 DM 1.4 pCi/l Gross Beta, diss., LLD 05/08/89 DM 0.8 pCi/l Radium 226, dissolved 05/08/89 DM 0.1 pCi/l EPA 903.1 Radium 226, diss., error, +/-05/09/89 DF 0.1 pCi/l _lRadium 226, diss., LLD 05/09/89 DF 0.1 pCi/l Radium 228, dissolved 05/09/89 ÐF 3.8 pCi/l EPA 904_0 Radium 228, diss., error, +/-05/04/89 DF 1.9 pCi/l Radium 228, diss., LLD 05/04/89 DF 2.7 pCi/L 05/04/89 DF

420 West 1st Street Casper, WY 83 (307) 235-5741 82601

PAGE:1

APPROVED BY:

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as whatsoever whatsoever.

Western Atles International

...... چ

CORE LABORATORIES

JOB NUMBER	: 891414				05/	URANC 209/89	E REP(- ~ 1			
Q.A. TYPE	a second and a second		JSTOMER: EN	IRDTEST LA	BORATORIES I	NC.	A	TN: DOUG	AUSE		
 ;=		BLANK VALUE	STANDARD VALUE	ANALYZED	BACKGROUND VALUE	SPIKE TRUE VALUE	SPIKE MEASURED VALUE	DUPLICATE SAMPLE ANALYSIS	DUPLICATE ANALYSIS	X RECOVERY	X RELATIV
Q.A. NUMBE	R:892929	05/04/89	08:59		Radium 228,	dissolved		1	1		ERROR
Q.A. NUMBE	R : 892930 1	 05/04/89 in	18.50			<u> </u>		<u> </u>	<u> </u>	TE	CHNICIAN
<u></u>		<u></u>		Radi	ium 228, dis	S., error,	• <i>I•</i> 🔬			TEI	CHNICIAN
Q.A. NUMBER	R:892931 (05/04/89 0	18:59		Radium 228,	diss_ Ifr					
	802000		1	1	L			<u>- 22 2</u>		TEC TEC	CHNICIAN:
Q.A. NUMBER	· · · · · · · · · · · · · · · · · · ·	15/08/89 3	3:22	·	Gross Alpha	, dissolved	1			<u>l</u> TEC	HNICIAN-
	891264-1			-			<u>_</u>	0.3	0		200
DUPLICATE								5.1	7.5	-	1
DUPLICATE	891497-1							1	0.7		38
Q.A. NUMBER	:893000 0	5/08/89 1	8:31			al . The area					35
DUPLICATE		<u> 1997 - 1997 - 1997</u> 		UFOS	s Alpha, dis	s., error,	• 7			TEC	HNICIAN:
DUPLICATE		1						1.2	1.1	······	8.
DUPLICATE		1						0.9	1.4		43.
	•/ •/ •/							0.5	0.5		0.
Q.A. NUMBER	:893001 0	5/08/89 13	5:40	Gr	oss Alpha, (diec in	<u> </u>	<u> </u>			
DUPLICATE	891264-1						1	· · · · · · · · · · · · ·		TECH	NICIAN:D
	B91175-1							1.1	1.1		0.
	891497-1							1.8	2.3		24.
						ĺ		1	1		0.4
A. NÜMBER;		/08/89 13	:46		ross Beta, c	lissolved	<u>I</u>	10.2 mar 20			
DUPLICATE 8	391264-1				<u> </u>		<u> </u>	0	<u>):~/~~~</u> /	<u> </u>	NICIAN : DI
UPLICATE 8	391175-1							47.6	1.2		200.(
UPLICATE 8	391497-1								36.8		25.5
								9.8	11.9		19.3
I.A. NUMBER		708/89 13	:52 1	Gross	Beta, diss.	, error, +	1-			TECHA	IICIAN DH
UPLICATE 8								1.5	1.6	<u></u>	
UPLICATE 8								8.2	8.5		6.4
UPLICATE 8	91497-1							3.2	3.3		3.5
	.	1 1	Λ				··			1	3.0
PPROVED BY:		un p	hen			-		420 West (Casper, M (307) 235-	82601		

PAGE:1

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason

.

CORE LABORATORIES

	: B91414	CL	ISTOMER: EN	VIROTEST LA	BORATORIES I	an a					
Q.A. TYPE	Q.A. ID	BLANK	STANDARD VALUE	ANALYZED VALUE	BACKGROUND	SPIKE	AT	TN: DOUG T	<u> </u>		
Q.A. NUMBE	R:893003	05/08/80	1	1	VALUE	TRUE VALUE	MEASURED	SAMPLE	DUPLICATE ANALYSIS	X RECOVERY	% RELA
	<u> </u>	1	3:52	Gros	s Beta, diss		VALUE		<u> </u>	TEC	ERRC
			ļ	<u> </u>							1 HM1C1
UPLICATE	891264 - 1	100/09/09	3:57		Gross Beta,	diss., LL	5				
	891175-1					·····		1.1	1.1	TECI	HNICI
								1.8	2.3		
-, CIGNIE	891497-1							1	Ì		
.A. NUMBER	:893052 D	5/09/89 10);04	L		×	<u> </u>		7		
		T	<u></u>		tadium 226, a	dissolved				TÈCH	ר <u>ר</u> זואו
A. NUMBER	:893053 D	5/09/89 10	: 05	Radii	m 226, diss.	, error,	L[•/-		<u>_</u>	<u> </u>	
A. NUMBER	893054 D	1 5/09/89 10	- <u>15</u>	Color San Januar Marco]		TT	<u></u>	<u> </u>	TECH	NICIA
	<u></u>				edium 226, g	liss., LLD				ТЕСНІ	
							T		<u>899 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199</u>	T	
				1							
	j										
		i									
								[
										ļ	
	[
				_							
ROVED BY:_	1		lin	5		· <u> </u>		420 West 1s			

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed representations by the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as we are a confidential length or representations, express or implied, as we are any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason.

GROUNDWATER SUPPLY ASSESSMENT PROPOSED GAN EDEN ESTATES THOMPSON AND HURLEYVILLE, NEW YORK

PREPARED FOR:

PROPOSED GAN EDEN ESTATES MR. LARRY FRENKEL 38 SKY MEADOW ROAD SUFFERN, NEW YORK

PREPARED BY:

HydroEnvironmental Solutions, Inc. One Deans Bridge Road Somers, New York 10589 (914) 276-2560

NOVEMBER 2008

Reviewed b

President

William A. Canavan, CRG PG

Prepared by:

Samuel G. McTavey Geologist / Hydrogeologist

914.276.2560 • Fax 914.276.2664 • http://www.hesny.com

TABLE OF CONTENTS

INTRODUCTION	1
BACKGROUND	1
Water Demand & Use Site Geology	1 1
PUMPING TEST STRUCTURE	2
Step-Drawdown Test 72-Hour Pump Test Rainfall Monitoring Pumping Well Observation Wells	2 2 2
RESULTS OF PUMPING TEST	4
Step-Drawdown Test 72-Hour Pump Test Pumping Well Observation Wells On-Site Well Off-Site Well Rainfall Mon	s5
WATER QUALITY	
DISCUSSION OF RESULTS	7
CONCLUSIONS	8
RECOMMENDATIONS	9
REFERENCES	

TABLE OF CONTENTS (continued)

TABLES

Table 1. On-site Well Construction Details

Table 2. Off-site Well Locations

Table 3. Results of Water Quality Analyses

Table 4. On-site Rain Gauge Monitoring Log

FIGURES

Figure 1. Site Location Map

Figure 2. Pumping and Observation Well Location Map

Figure 3. TW-6 Hydrograph: 8-Hour Step-Drawdown Test

Figure 4. TW-5 Hydrograph: 8-Hour Step-Drawdown Test

Figure 5. TW-6 Hydrograph: 72-Hour Pump Test

Figure 6. MW-1 Hydrograph: 72-Hour Pump Test

Figure 7. P-1 and P-2 Hydrograph: 72-Hour Pump Test

Figure 8. TW-3 Hydrograph: 72-Hour Pump Test

Figure 9. TW-5 Hydrograph: 72-Hour Pump Test

Figure 10. Off-Site Monitor Well: Columbia Hill Well Hydrograph

Figure 11. Off-Site Monitor Well: Crawford Well Hydrograph

Figure 12. Off-Site Monitor Well: Gaor Well Hydrograph

Figure 13. Off-Site Monitor Well: Indik Well Hydrograph

Figure 14. Off-Site Monitor Well: Sauer Well Hydrograph

APPENDICIES

- <u>Appendix 1</u> Water Supply Assessment Report 1989 (LBG)
- Appendix 2 On-site Pumping Wells and Observation Wells Raw Data TW-3 Observation Well Water Level Monitoring Data TW-5 Observation Well Water Level Monitoring Data TW-6 Pumping Well Water Level Monitoring Data MW-1 Observation Well Water Level Monitoring Data P-1 and P-2 Observation Well Water Level Monitoring Data
- Appendix 3 Off-site Monitoring Wells Raw Data Columbia Hill Residence Well Water Level Monitoring Data Crawford Residence Well Water Level Monitoring Data Gaor Residence Well Water Level Monitoring Data Indik Residence Well Water Level Monitoring Data Sauer Residence Well Water Level Monitoring Data
- Appendix 4 Geologic Logs: MW-1 P-1 P-2
- <u>Appendix 5</u> Water Quality Sampling Results

INTRODUCTION

Larry Frenkel, on behalf of Gan Eden Estates (Gan Eden), retained HydroEnvironmental Solutions, Inc. (HES) to conduct two 8-hour step drawdown pump tests on two test wells and a 72-hour pump test on the highest yielding test well located on the proposed Gan Eden Estates property, in the towns of Thompson and Fallsburg within the hamlet of Hurleyville, New York at the intersection of County Roads 104 and 107 (**Figure 1**). The testing was conducted to determine the long-term yield and suitability for public supply usage of the proposed wells, according to the guidelines set by the New York State Department of Environmental Conservation (NYSDEC) and the Sullivan County Department of Health (SCDOH) for municipal supply wells.

BACKGROUND

Water Demand & Use

In 1989, Leggette, Brashears & Graham, Inc. (LBG) conducted an investigation into the availability of groundwater on the proposed Gan Eden Estates property. LBG performed a simultaneous pumping test of TW-3 and TW-5 in April of 1989, determining that the sustainable yield capacity of on-site test well TW-3 is less than 15 gallons per minute (gpm) and therefore not recommended for development (Leggette et al., 1989). However, test well TW-5, was discovered to have a capacity of 140 gpm making it a reliable well source. Following the simultaneous pumping of TW-3 and TW-5, a third test well, TW-6, was pumped individually for 72-hours at rates of 150 and 200 gpm, demonstrating that TW-6 has a sustainable yield capacity of at least 200 gpm. A summary of on-site well construction details is included on **Table 1** and a copy of the previous water supply assessment report is included in **Appendix 1**.

The proposed development of Gan Eden Estates will supply water to private homes, town homes and apartments. For new community water supplies, the NYSDEC guidelines require development of two independent sources, each capable of delivering the average daily demand of the project. In effect, the guidelines require development of double the daily demand. This requirement must be met with the best well out of service if the wells are in bedrock. Therefore, consumptive supply for the new development will be provided by water supply well TW-5, with TW-6 acting as the backup supply well.

Site Geology

The proposed Gan Eden Estates property lies above the Devonian Upper Walton bedrock formation comprised of a shale sandstone conglomerate (Fisher et al., 1970). The bedrock is not exposed in the vicinity of the site and is mantled by approximately 16 feet of unconsolidated glacial till (driller's logs).

PUMPING TEST STRUCTURE

Step-Drawdown Test

Prior to conducting the 72-hour pumping test at test well TW-6, a preliminary 8-hour step drawdown test was conducted on test wells TW-5 and TW-6. On July 14, 2008, a 15 horsepower (hp) *Grundfos*TM 235 stainless steel submersible pump was set in TW-6 at a depth of 200 feet. During pump testing, TW-6 was monitored using a data logger to record water temperature, pressure and depth. Also, the well was periodically checked by hand measurement using an electric tape water level indicator. Test well TW-5 was also monitored during the test to determine the effects of pumping at TW-6. Similarly, on July 15, 2008 a 10 hp *Grundfos*TM stainless steel submersible pump was set in TW-5 at a depth of 200 feet. Both 8-hour step drawdown tests were performed at an initial pumping rate for a 2-hour period and then the pumping was increased for another 2-hour period, before reaching the final pumping rate for a duration of 4 hours. During the 8-hour period, both TW-5 and TW-6 were monitored using data loggers set to collect water level readings every 15 seconds. The pumping wells were allowed to fully recover before the start of each step drawdown test.

72-Hour Pump Test

A 72-hour pumping test was conducted on test well TW-6 from July 16 through July 19, 2008. During the pumping, test well TW-5 remained out of service and was monitored. An on-site and off-site well monitoring program was set up to document any hydrogeologic effects of sustained pumping of the test well TW-6. **Table 2** provides a list of residences approached by HES that provided access to their water supply wells. A summary of the raw data collected from the on-site and off-site wells is included as **Appendix 2** and **Appendix 3**, respectively.

Following the completion of the 72-hour pump test, pumping was restarted at each of the wells for the purpose of sampling each test well for NYSDOH Drinking Water Standards (DWS). The results of the groundwater quality for the two test wells are summarized on **Table 3**.

Rainfall Monitoring

Prior to the start of the pumping test, HES installed a rain gauge located in the vicinity of the test wells. The location was in an open field area and at a distance from any interfering sources for accuracy. The gauge was monitored with measurements recorded daily and emptied as needed. During the testing period, minimal rainfall only fell on July 21 and 22, 2008. The measured rainfall totals during the testing period are shown in **Table 4**.

Pumping Well

Test well TW-6 was fitted with a submersible pump and 1-inch diameter PVC measuring tube. A 15 hp *Grundfos*[™] stainless steel submersible pump was set in TW-6 at a depth of 200 feet. The submersible pump setting was based upon the projected volume of water to be pumped from each well and the former 1989 pumping test results. The pump was powered by a portable diesel fueled electric generator. The long-term pumping rate was based on by the field-test yields determined by the 8-hour step drawdown testing.

TW-6 was field test rated for 225 gpm by HES; therefore, a 72-hour pumping test of this well was designed at a conservative rate of 210 gpm. Following completion of the 72-hour pumping test, the well was monitored to document recovery.

Observation Wells

During, before and after the 72-hour pumping test, HES monitored selected wells in the vicinity of the subject site. One monitoring well, two piezometers (P-1 and P-2) and two test wells were monitored on-site during this time period. The locations of these wells are shown on **Figure 2**. The geologic logs for P-1, P-2 and the drilled well adjacent to the pumping wells, MW-1, is included in **Appendix 4**.

HES canvassed the area surrounding the Gan Eden Estates proposed well field to obtain homeowner permission to monitor residential supply wells during the pumping test period. A total of five off-site property owners granted permission to monitor their supply well during the pumping test (**Table 2**). Beginning several days before initiation of the 72-hour pumping test, HES monitored the residential off-site supply wells from the area surrounding the well field. All of these wells are individual residential supply wells with the exception of the Columbia Hill well which services a number of cottages for a small resort. The observation wells were monitored on a daily basis before, during and after the pumping test at set intervals using pressure transducer data loggers installed in each of these wells.

At the end of testing, HES collected a water quality samples from Test Wells TW-5 and TW-6. The samples were collected in appropriate laboratory supplied containers in accordance with industry accepted practices on July 20, 2008. The samples were placed on ice in a cooler and transported to Envirotest Laboratories, Inc., a New York State certified laboratory located in Newburgh, New York. The groundwater quality laboratory analytical results are summarized on **Table 3** and the raw data is included in **Appendix 5**.

RESULTS OF PUMPING TEST

Step-Drawdown Test

The 8-hour step-drawdown pump test at test well TW-6 began at 10:00 AM on July 13, 2008, showing an initial drawdown of 37.86 feet to the depth to water at 125 gpm (**Figure 3**). When pumping increased to 150 gpm, the depth to water dropped to 60.34 feet and, finally, at the 225 gpm pumping rate the depth to water declined to a maximum of 75.84 feet before pumping was stopped.

Pumping at TW-5 began at 9:40 AM on July 14, 2008 at 50 gpm and the depth to water dropped to 21.49 feet (**Figure 4**). At 11:45 AM, the pumping was increased to 100 gpm and the water level dropped to 35.91 feet. The pumping was then increased to 150 gpm at 1:40 PM and the depth to water dropped to a maximum of 54.26 feet before pumping was stopped.

Projections of the 8-hour water level drawdown trend at 225 gpm for TW-6 and 150 gpm for TW-5 indicates that both wells can be pumped at their respective rates over the long-term. Both test wells showed excellent signs of recovery, with TW-6 recovering slightly faster than TW-5, providing further proof that TW-6 is the better supply well. Lastly, well interference effects were observed between the two wells during the step-drawdown tests. The hydrogeolgic behavior of these two wells during the step drawdown testing is shown on **Figures 3** and **4**, hydrographs of the two wells during this phase of testing.

72-Hour Pump Test

Pumping Well

The 72-hour pumping test at TW-6 began at 9:00 AM on July 15, 2008 at a pumping rate of 210 gpm. A pressure transducer data logger measured the depth to water in the well during the pumping test and calculated the drawdown, which is plotted versus time on a arithmetic graph. The pump was turned off at 10:00 AM on July 19, 2008 resulting in a total drawdown of 128.08 feet during the pumping period. **Figure 5** is a plot of drawdown (in feet) versus time (in minutes) for TW-6. The graph demonstrates that drawdown stabilization occurred during the last 12 hours of pumping, when the drawdown curve achieves a relatively flat slope, as recorded on the TW-6 hydrograph (**Figure 3**). Over the last 12 hours of testing, the drawdown in TW-6 was 5.497 feet; over the last six hours of testing the drawdown was 1.728 feet or 0.29 feet per hour. The very slow rate of

drawdown over this period demonstrates that stabilization was achieved. Test well TW-6 recharged rapidly upon cessation of pumping with 60% recovery within 180 minutes (3 hours) after pumping was stopped. The well was 95% recovered by 10:00 PM on July 21, 2008, 40 hours after the pump was turned off.

The estimated water demand value according to New York State Department of Health (NYSDOH) guidelines is 110 gallons per day (gpd) per bedroom. Therefore, the estimated daily demand that could be supported by the existing test wells based on the result of the step-drawdown and 72-hour pumping tests for the proposed Gan Eden Estates would be as follows:

Test Well TW-6

210 gpm x 1440 minutes per day = 302,400 gpd

302,400 gpd / 110 gpd/bedroom = 2,749 bedrooms

Test Well TW-5

150 gpm x 1440 minutes per day = 216,000 gpd

216,000 gpd / 110 gpd/bedroom = 1,963 bedrooms

Observation Wells

On-Site Wells

HES observed evidence of hydrogeologic influence (drawdown) on-site on the monitoring well MW-1, the two piezometers (P-1 and P-2) and two test wells (TW-3 and TW-4). Water levels in these wells during the monitoring period demonstrated drawdown and fluctuations consistent with the pumping test. The hydrographs for the on-site observation wells are shown as **Figures 6** through **9**. The water level monitoring data for the on-site observation wells are included in **Appendix 2**.

Off-Site Wells

The off-site monitoring program indicated that only one of the five observations wells experienced drawdown effects due to on-site pumping during testing at TW-6. The Sauer well, located to the East of the subject site on County Road 104, shows an initial depth to water level of 5 feet at the start of pumping with a decline to 12 feet after one day of pumping (**Figure 14**). The observed straight line on the graph indicates that the water level in the well dropped beneath the data logger installed in the well and thus the data logger did

not record the full extent of drawdown in the well during pumping. No hand held electric tape or data logger was able to measure the depth to water in the well below this level due to the presence of a blockage in the well, most likely a solid rubber pump stabilizer or other unknown blockage in the well annulus. However, immediately following pumping shutdown, the well experienced a rapid recovery as noted on the hydrograph at the end of pumping on July 19, 2008. Prior to pump test startup the Cole residence, located near the Sauer well on the western side of County Road 104, was approached to be included in the testing; however, neither the data logger nor a manual electric tape could be inserted past the pump stabilizer. Thus, this private off-site well could not be monitored during testing.

None of the other off-site private wells observed demonstrated appreciable drawdown as a result of the pumping test, although variable fluctuation can be seen. However, for each observed drop in water level in these monitored wells, an equal rate of recovery was observed to pre-pumping static or above pre-pumping levels. Hydrographs showing depth to water versus time for the off-site private wells are provided as **Figures 10** through **14**. The water level monitoring data for all off-site wells are included in **Appendix 3**.

Rainfall Monitoring

The results of rainfall monitoring before, during and after testing indicate that a total of 0.32 inches of rainfall fell between July 13, 2008 and July 22, 2008. Specifically, two localized thunderstorms dropped 0.26 inches of rain on July 21 and 0.06 inches on July 22. No appreciable groundwater recharge effects were noted on any of the on-site hydrographs during the pump testing period. That is, no rebound of on-site groundwater levels was noted on any of the hydrographs during the pumping test as a direct result of rainfall. The results of rainfall monitoring are included on **Table 4**.

WATER QUALITY

Following completion of the 72-hour pumping test, test wells TW-5 and TW-6 were sampled for analysis according to the NYS Sanitary Code Part 5 and the requirements of the SCDOH which includes the following parameters:

- Full inorganic and physical chemical analysis including nitrates and nitrites
- Microbiological for E. coli and total coliform
- Organic Compounds including methyl tertiary butyl ether (MTBE)
- Synthetic Organic Compounds

The water quality results for both test wells TW-5 and TW-6 illustrates that the groundwater is of very good quality and suitable for potable public water

supply according to the NYS Sanitary Code Part 5. Turbidity and color were found to be slightly high compared to NYSDOH standards due to the presence of iron in the groundwater. Iron levels were similarly high in both wells when compared to the SCDOH standard of 0.30 parts per million (ppm), with 0.99 ppm at TW-5 and 0.64 ppm at TW-6. The analytical results are summarized in **Table 3** and the data as provided by the laboratory are attached as **Appendix 5**.

DISCUSSION OF RESULTS

The results of the 8-hour step drawdown tests indicate that test well TW-6 can maintain a pumping rate of 225 gpm while TW-5 can maintain a rate of 150 gpm. The hydrographs plotted for these two wells (**Figure 3** and **Figure 4**) suggest that well stabilization would occur over time and that the amount of available drawdown in the wells will allow for long-term pumping at these capacities without overtaxing the fractured bedrock aquifer that the wells intersect.

The results of the 72-hour pumping test conducted on the previously installed supply wells TW-5 and TW-6 demonstrates that these wells are more than capable of meeting the water demands for up to 1,963 bedrooms using TW-5 as the primary well and as many as 2,749 bedrooms using TW-6 as the primary well. The results of pump testing demonstrate that well stabilization was achieved at TW-6 at a pumping rate of 210 gpm. The well had substantial remaining available drawdown at the end of pumping and a rapid recovery rate after shutdown indicating that the well was not over pumped at the prescribed pumping rate.

The results of the 72-hour pump test indicate that four of the five on-site observation wells were impacted due to the pumping at TW-6 as well as the piezometers set in the wetlands located on-site. Specifically, the on-site drawdown impacts to the observation wells were 3.52 feet at P-1, 3.65 feet at P-2 and 4.15 feet at MW-1. These wells are all screened in the overburden material beneath the site and are an indication that pumping the bedrock aquifer at test well TW-6 did induce drawdown in the shallow unconsolidated water table aquifer at the site. Thus, the overburden aquifer is hydrogeologically connected to the bedrock aquifer at the site. Observation wells P-1, P-2 and MW-1 are located approximately 64 feet, 60 feet and 160 feet, respectively from pumping well TW-6.

The most significant drawdown impact observed in an on-site observation well was at TW-5, which experienced a drawdown of 129.74 feet. The significant drawdown at TW-5 indicates that wells TW-5 and TW-6 draw water from the same fractures or water-bearing units in the bedrock aquifer. During pumping and the recovery period, TW-5 mimicked the hydrogeologic behavior of TW-6. On-site test well TW-3, located to the south of TW-6, experienced no drawdown

due to pumping, which is consistent with the off-site well locations upgradient from TW-6.

Finally, the results of off-site monitoring demonstrate that pumping well TW-6 at a rate of 210 gpm did not induce any off-site impacts at any of the surrounding residential supply wells monitored with the exception of the Sauer well. The Sauer well, located 75 feet east of the site on the western side of County Road 104, experienced a drawdown of at least 7 feet before the water level dropped below the depth of the data logger set in the well. However, at the end of pumping the well experienced rapid recovery. More than likely if TW-5 is selected as the primary supply well at a rate of 150 gpm drawdown impacts to the Sauer well will be reduced or possibly become non-existent. Nonetheless, any detectable on-site and off-site impacts would be considerably less if the pumping rate remained constant at 150 gpm rather than the testing rate at TW-6 of 210 gpm. The water level data plotted on the hydrographs (**Figures 5** through **14**) support this conclusion.

CONCLUSIONS

- 1. An 8-hour step drawdown test conducted on test well TW-6 demonstrated that the capacity of the well is 225 gpm while the same step drawdown test conducted on TW-5 indicated that this well has a capacity of 150 gpm.
- 2. A 72-hour pumping test conducted on test well TW-6 demonstrated that the capacity of the well is 210 gpm and that rate can be maintained long-term.
- 3. On-site monitoring demonstrated that sustained pumping at the proposed well induced drawdown in the three on-site overburden wells. The observed drawdown in these wells is an indication that the pumping well is hydrogeologically connected to the overburden water table aquifer.
- 4. Off-site monitoring of residential supply wells surrounding the proposed Gan Eden Estates property demonstrated that sustained pumping at the Gan Eden Estates well field induced drawdown in one residential supply well located east of the site. Pumping at the proposed rate of 150 gpm in TW-5 rather than the pump test rate of 210 gpm at TW-6 will likely eliminate or drastically reduce these effects.
- 5. Test well TW-6 achieved stabilization during the pump test for a period of at least 12 hours. The well recovered to 95% within 40 hours, and had substantial available drawdown at the end of 72 hours of pumping. Thus, the proposed supply well was not overpumped and the rated capacity for this well is considered conservative.

RECOMMENDATIONS

Based on the results of the water supply assessment, including separate 8-hour step drawdown tests and a 72-hour pump test, HES recommends that test well TW-5 be utilized as the main supply well for the proposed development and that TW-6 should be utilized as the back-up supply well. This scenario will be in compliance with the NYSDEC requirement for double the daily demand of the proposed project with the best well out of service. Based on the results of the off-site well monitoring program, HES recommends that the Sauer well be fitted with a 1-inch PVC drop tube so that a data logger may be installed in this well for long-term monitoring purposes following development and full-time use of the proposed on-site water supply. This will allow for qualitative proof that pumping the on-site supply well at the recommended rate of 150 gpm will not adversely impact this existing off-site supply well. A formal water supply permit application will be forwarded to the NYSDEC with this water supply assessment report.

REFERENCES

Fisher, Donald W., Yngvar W. Isachen, and Lawrence V. Rickard. (1970) Geologic Map of New York, Lower Hudson.

Leggette, Brashears & Graham, Inc. (1989) Ground-Water Supply Well Pumping Test Report, Gan Eden Estates Hurleyville, New York.

TABLES

Table 1

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, New York

On-site Wells	Total Depth (feet)	Geology		
MW-1	12	5-7'	sand, fine to medium, brown, moist	
10100-1		10-12'	sand and gravel, coarse sand, wet	
TW-3	520	0-10'	till material	
100-3		10-520'	interbedded gray siltstone, red shale	
TW-5	380	0-16'	clay, silt and gravel	
100-5		16-380'	interbedded gray siltstone, red shale	
TW-6	460	0-16'	clay, silt and gravel	
1 00-0		16-460'	interbedded gray siltstone, red shale	
PZ-1	12	0-2'	peat, silt, root matter	
FZ-1		2-12'	till, silty fine sand, red-brown, some fine gravel	
D7 0	14	0-2'	peat, silt, root matter	
PZ-2		2-14'	till, silty fine sand, red-brown, some fine gravel	

On-site Well Construction Details

Table 2

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, New York

Off-Site Well Location

Off-Site Wells	Well Depth (ft)	Pump Depth (ft)	Address
Columbia Hill	NA	NA	Columbia Hill Estates, Old Liberty Road
Crawford	NA	NA	1150 Old Liberty Road
Gaor	620	600	31 Whittaker Road
Indik	NA	NA	1140 Old Liberty Road
Sauer	NA	NA	County Road 104

NA = Not Available

Table 3

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, New York

Results of Water Quality Analyses

Method	Parameter / Description	TW-5 Result	TW-6 Result	Reporting Limit	Limit
SM18 9223	Coliform, Total	Absent	Absent	pos/neg	any positive
SM18 9223	E. coliform	Absent	Absent	pos/neg	any positive
EPA 245.1	Mercury (Hg)	ND	ND	0.0002	0.002
EPA 110.1	Color	50 units	50 units	2.5 units	15 units
SM18 2130B	Turbidity	17 NTU	22 NTU	0.1 NTU	5 NTU
EPA 140.1	Odor	1 unit	1 unit	1 unit	3 units
SM18 4500CNE	Cyanide, Total	0.01	0.01	0.01	0.2
600/R-93-116	Asbestos	ND	ND	NA	7x10^6 fibers/liter
EPA 200.7	Metals Analysis (ICP)				
	Iron (Fe)	990	640	100	300
	Manganese (Mn)	36	30	15	300
	Zinc (Zn)	92	140	20	500
	Sodium (Na)	9400	8200	5000	
EPA 200.8	Metals Analysis (ICP)	3400	0200	5000	no designated innit
	Silver (Ag)	1	1	1.0	50
	Lead (Pb)	2.4	1.4	1.0	15
	Arsenic (As)	2.4	1.4	1.0	50
		1	1	1.0	50
	Beryllium (Be)	1	1	1.0	
	Cadmium (Cd)		2	2.0	C
	Chromium (Cr)	2			100
	Copper (Cu)	12	3.6	2.1	1300
	Nickel (Ni)	1.1	1.2	1.1	100
	Antimony (Sb)	2	2	2.0	6
	Titanium (Ti)	1	1	1.0	2
	Barium (Ba)	120	110	2.0	2000
	Selenium (Se)	5	5	5	10
EPA SM 2340B	Calcium Hardness as Calcium Carbonate	25	24		no designated limit
	Hardness as Calcium Carbonate	35	33		no designated limit
	Alkalinity	36	32		no designated limit
EPA SM 2320B	Total Dissolved Solids	92	82	5	Ŭ
EPA SM 2540C	Fluoride	0.2	0.2	0.2	2.2
EPA 4500 F C	pH	6.11	5.84	0.2	Ŭ
	Heterotrophic Plate Count	4	15	2	no designated limit
EPA SM 9215B	Langelier Index	-3.1	-3.4		no designated limit
EPA SM 2330B	Volatile Organics				
EPA 524.2	Dichlorodifluoromethane	ND	ND	0.5	5
	Chloromethane	ND	ND	0.5	5
	Chlorobromomethane	ND	ND	0.5	5
	Vinyl chloride	ND	ND	0.5	5
	Bromomethane	ND	ND	0.5	5
	Chloroethane	ND	ND	0.5	5
	1,1-Dichloroethane	ND	ND	0.5	5
	Methylene chloride	ND	ND	1	5
	trans-1,2-Dichloroethene	ND	ND	0.5	5
	1,1-Dichloroethene	ND	ND	0.5	5
	2,2-Dichloropropane	ND	ND	0.5	5
	cis-1,2-Dichloroethene	ND	ND	0.5	5
	1,1,1-Trichloroethane	ND	ND	0.5	5
	1,1-Dichloropropene	ND	ND	0.5	5
	Carbon tetrachloride	ND	ND	0.5	5
	Benzene	ND	ND	0.5	5

All units in concentration of microgram/L (ppb) unless otherwise stated ND = not detected above reporting limits NTU = Nephelometric Turbidity Units

Table 3

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, New York

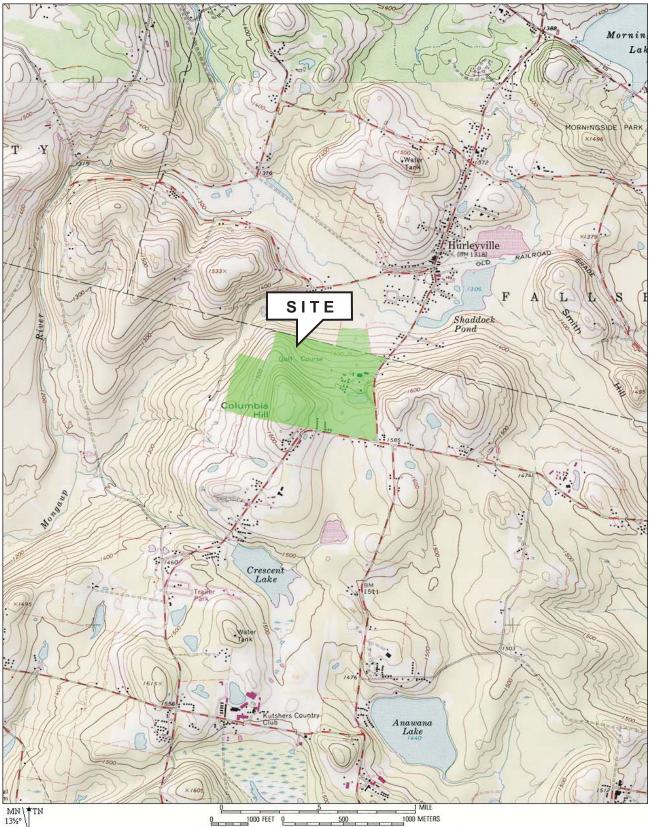
Results of Water Quality Analyses

Method	Parameter / Description	TW-5 Result	TW-6 Result	Reporting Limit	Limit
EPA 524.2 (cont.)	1,2-Dichloroethane	ND	ND	0.5	5
	Trichloroethene	ND	ND	0.5	5
	1,2-Dichloropropane	ND	ND	0.5	5
	Dibromomethane	ND	ND	0.5	5
	cis-1,3-Dichloropropene	ND	ND	0.5	5
	Toluene	0.64	0.68	0.5	5
	trans-1,3-Dichloropropene	ND	ND	0.5	5
	1,1,2-Trichloroethane	ND	ND	0.5	5
	Tetrachloroethene	ND	ND	0.5	5
	1,3-Dichloropropane	ND	ND	0.5	5
	Chlorobenzene	ND	ND	0.5	5
	1,1,1,2-Tetrachloroethane	ND	ND	0.5	5
	Ethylbenzene	ND	ND	0.5	5
	1,3,5-Trimethylbenzene	ND	ND	0.5	5
	m-Xylene & p-xylene	ND	ND	0.5	5
	4-Isopropyltoluene	ND	ND	0.5	5
	o-Xylene	ND	ND	0.5	5
	Styrene	ND	ND	0.5	5
	Isopropylbenzene	ND	ND	0.5	5
	1,1,2,2-Tetrachlorethane	ND	ND	0.5	5
	Bromobenzene	ND	ND	0.5	5
	1,2,3-Trichloropropane	ND	ND	0.5	5
	4-Chlorotoluene	ND	ND	0.5	5
	n-Propylbenzene	ND	ND	0.5	5
	2-Chlorotoluene	ND	ND	0.5	5
	tert-Butylbenzene	ND	ND	0.5	5
	1,2,4-Trimethylbenzene	ND	ND	0.5	5
	sec-Butylbenzene	ND	ND	0.5	5
	1,3-Dichlorobenzene	ND	ND	0.5	5
	1,4-Dichlorobenzene	ND	ND	0.5	5
	n-Butylbenzene	ND	ND	0.5	5
	1,2-Dichlorobenzene	ND	ND	0.5	5
	1,2,4-Trichlorobenzene	ND	ND	0.5	5
	Hexachlorobutadiene	ND	ND	0.5	5
	1,2,3-Trichlorbenzene	ND	ND	0.5	5
EPA 300.0	Ion Chromotography Analysis				-
	Chloride	12	9.7	10.00	250
	Nitrate as N (NO3-N)	0.27	0.27	0.25	10
	Nitrite as N (NO2-N)	0.5	0.5	0.5	1
	Sulfate	7.6	7.8	5	250

All units in concentration of microgram/L (ppb) unless otherwise stated ND = not detected above reporting limits NTU = Nephelometric Turbidity Units

Table 4

Proposed Gan Eden Estates Water Supply Thompson/Hurleyville, New York


On-site Rain Gauge Monitoring Log

Date	Time	Rainfall (in)
7/21/2008	10:00 AM	0.26
7/22/2008	11:00 AM	0.06
	Total	0.32

FIGURES

FIGURE 1 SITE LOCATION MAP

Proposed Gan Eden Estates Thompson & Hurleyville, New York

Map created with TOPO!® ©2002 National Geographic (www.nationalgeographic.com/topo)

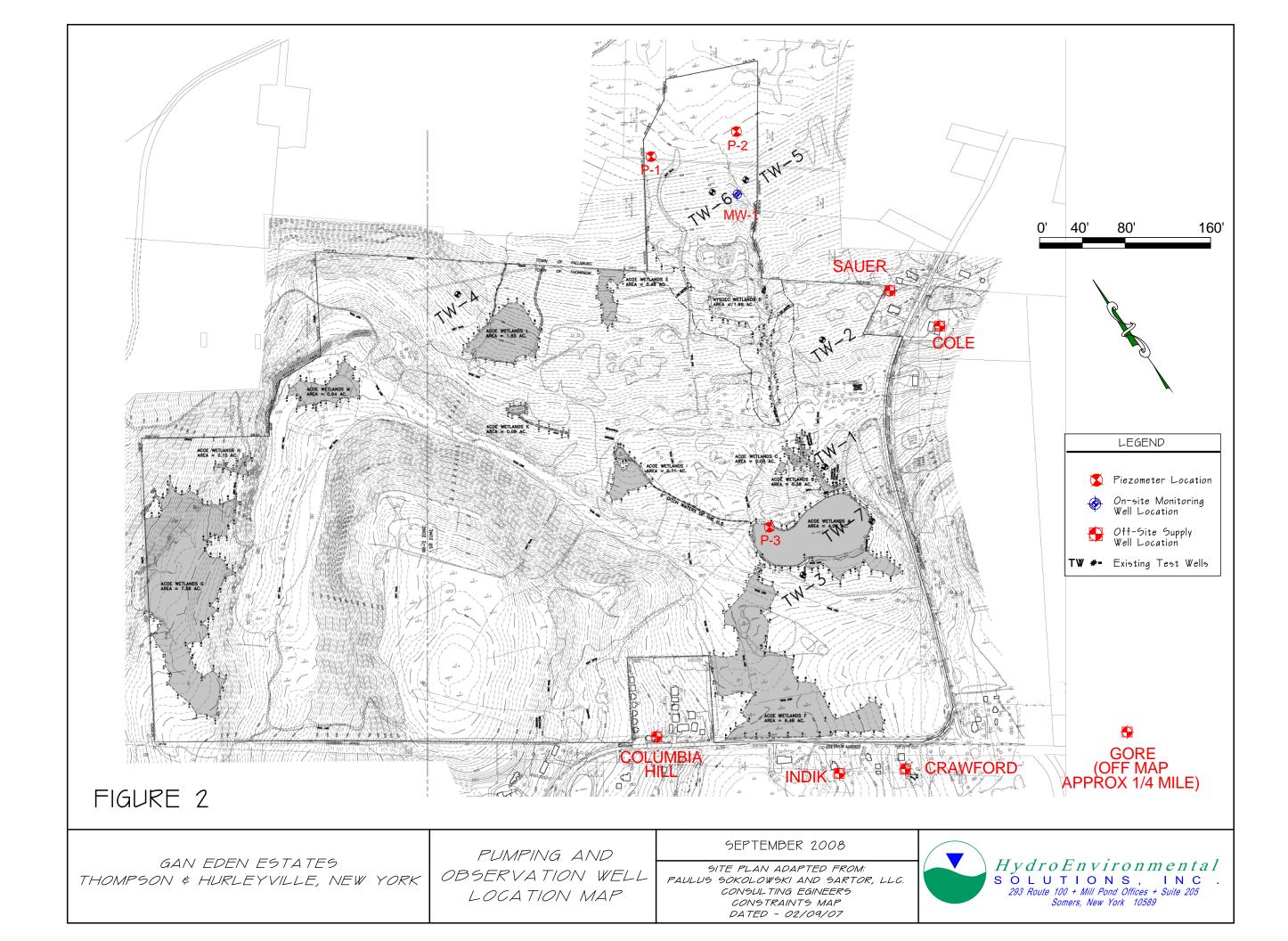


Figure 3

> TW-6 Hydrograph 8-Hour Step-Drawdown Test July 13, 2008

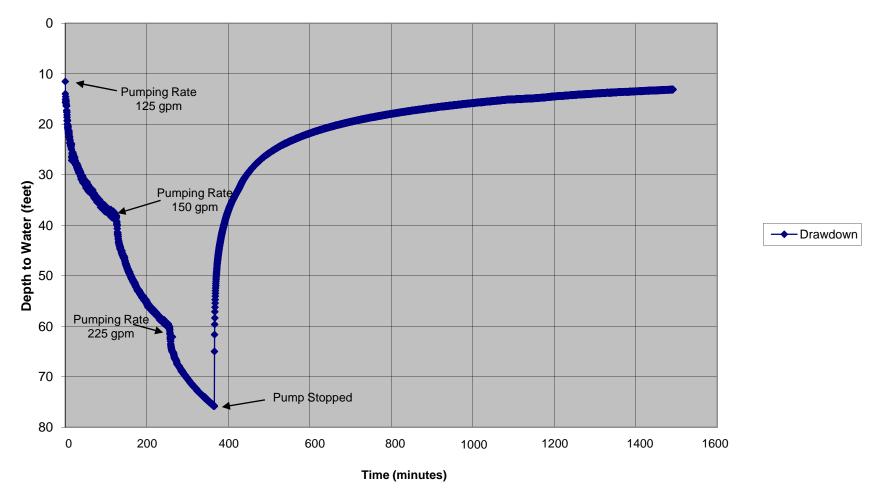
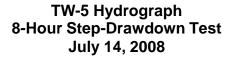
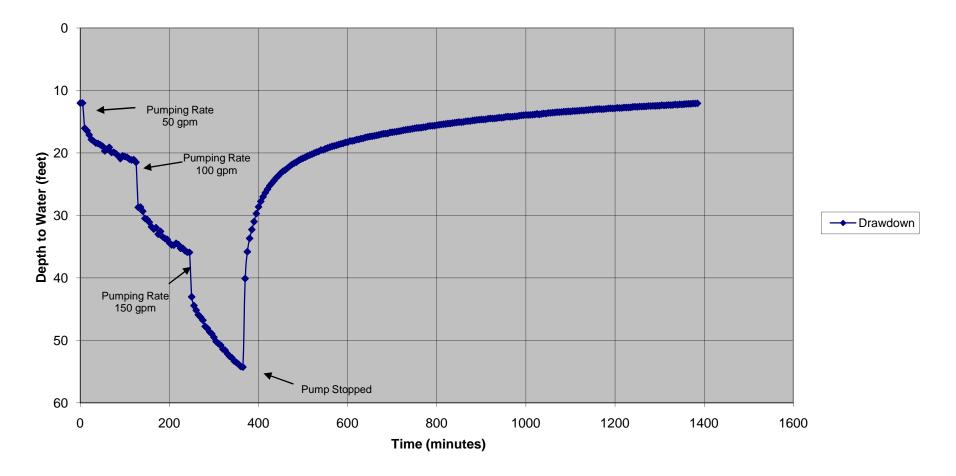




Figure 4

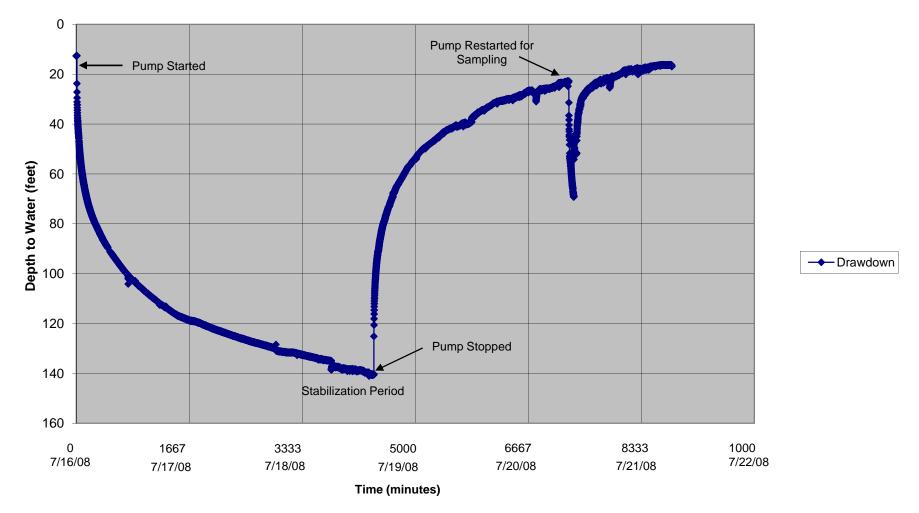
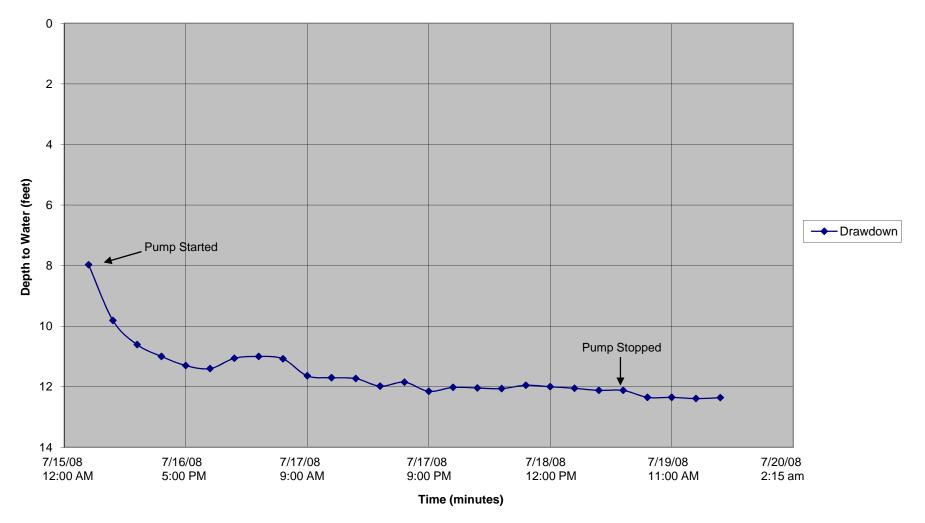
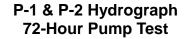
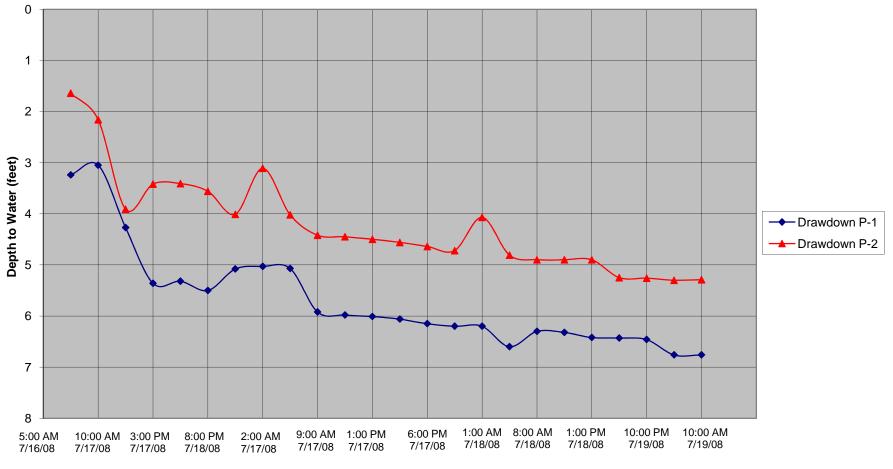


Figure 5

Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York


TW-6 Hydrograph 72-Hour Pump Test


Figure 6


Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York

MW-1 Hydrograph 72-Hour Pump Test

Time (minutes)

Figure 8

TW-3 Hydrograph 72-Hour Pumping Test

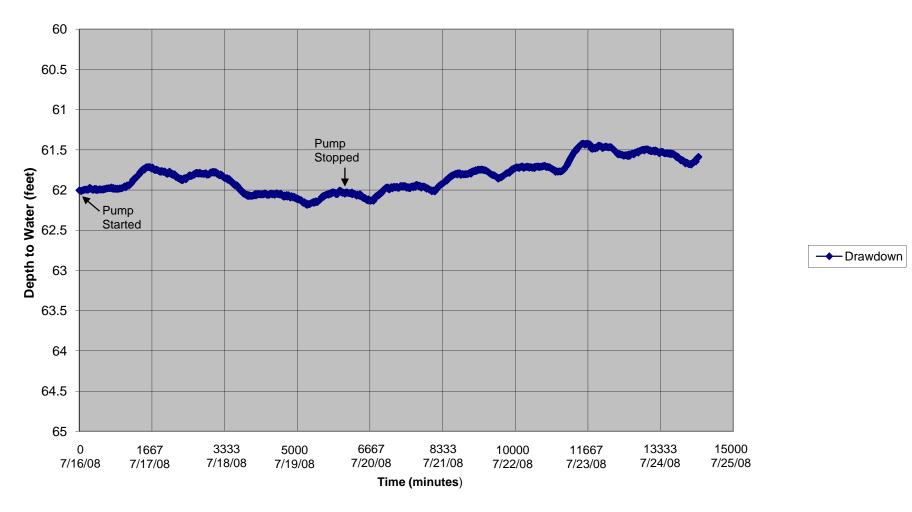
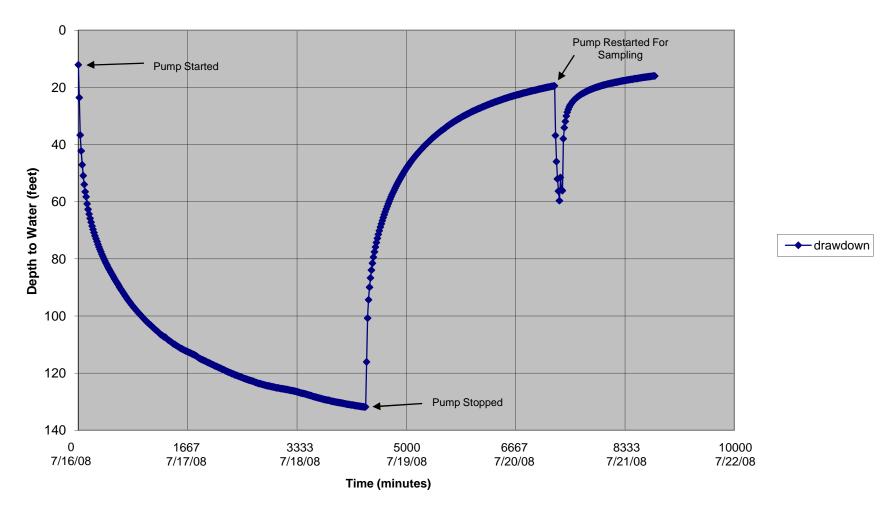



Figure 9

TW-5 Hydrograph 72-Hour Pump Test

Figure 10

Proposed Gan Eden Estates Water Supply Assessment Thompson/Hurleyville, New York

> Off-Site Monitor Well Columbia Hill Well Hydrograph

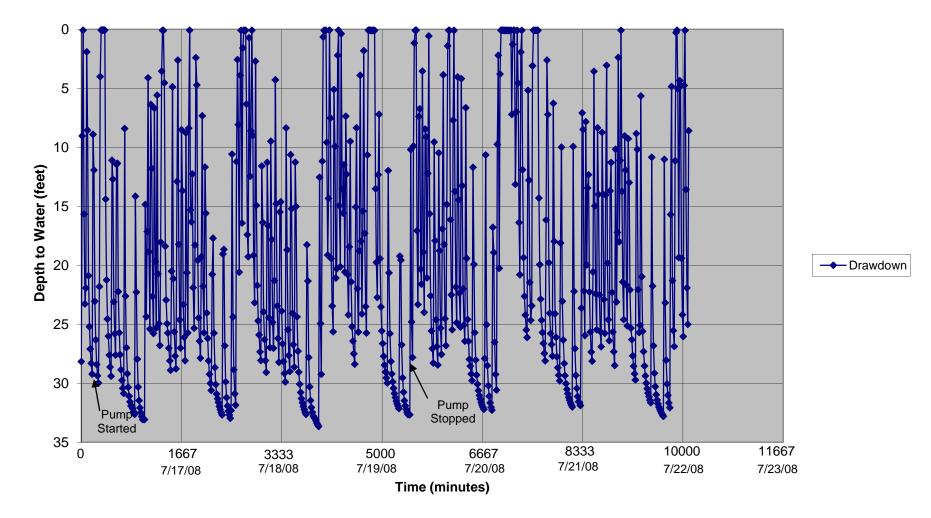


Figure 11

Off-Site Monitor Well Crawford Well Hydrograph

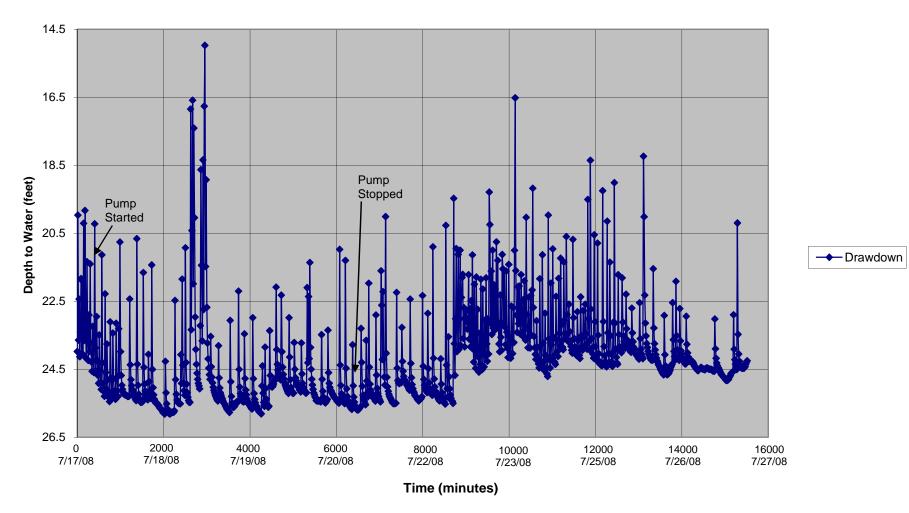


Figure 12

Off-Site Monitor Well Gaor Well Hydrograph

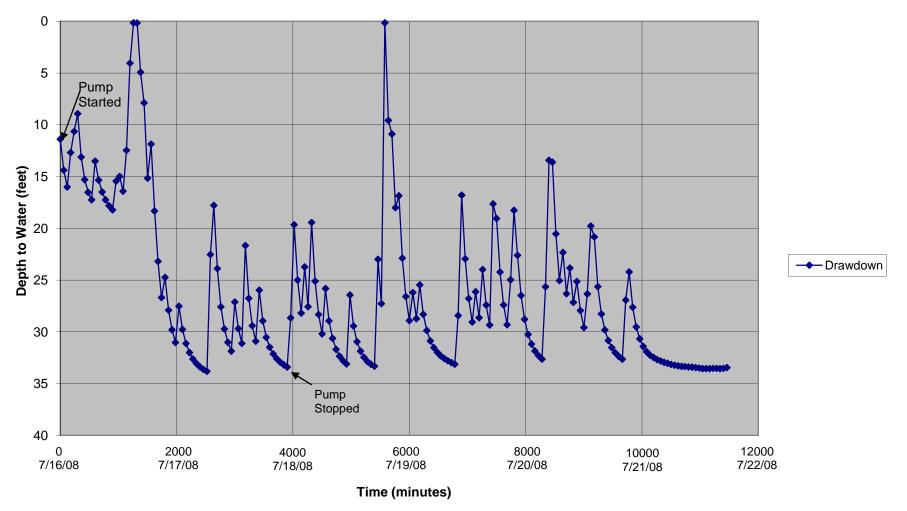
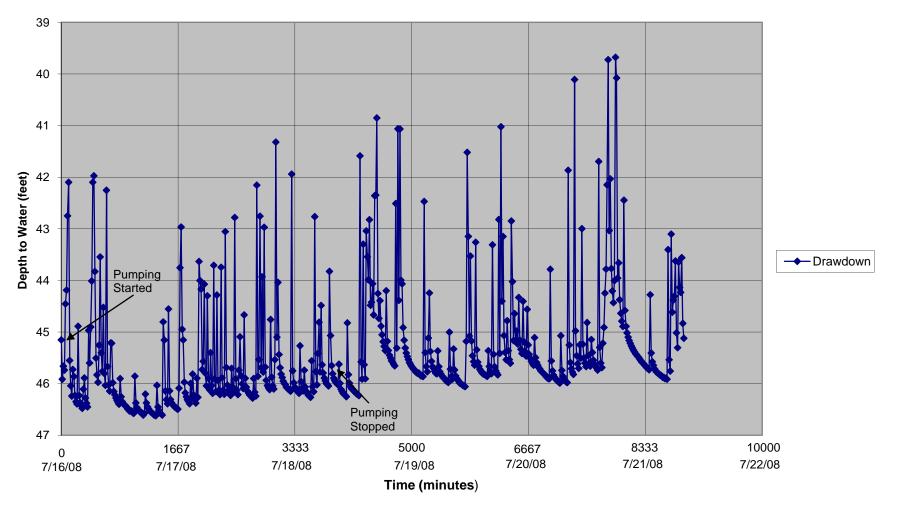



Figure 13

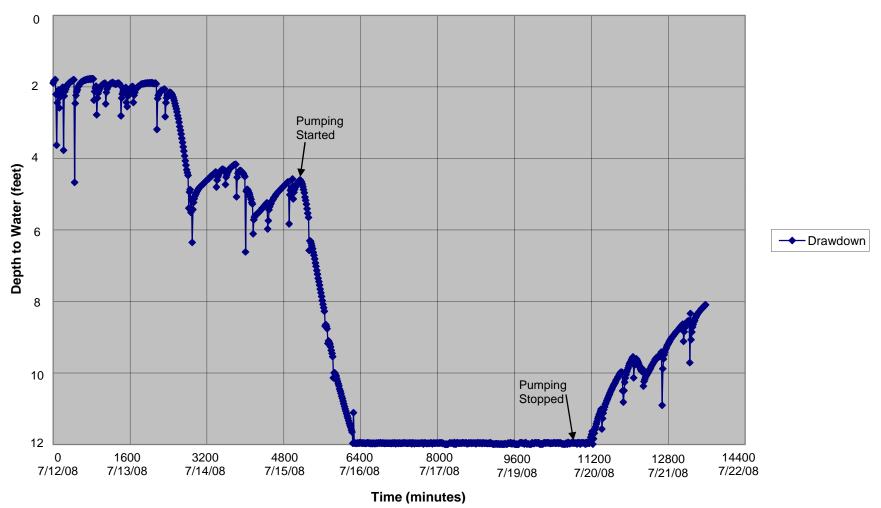

Off-Site Monitor Well Indik Well Hydrograph

Figure 14

Proposed Gan Eden Estates Water Supply Assement Thompson/Hurleyville, New York

APPENDIX 2:

On-site Pumping Wells and Observation Wells Raw Data

APPENDIX 3:

Off-site Monitoring Wells Raw Data

APPENDIX 4:

Geologic Logs

GEOLOGIC LOG	OWNER: Larry Frenkel				
HvdroEnvironmental	WELL NO.: MW-1				
HydroEnvironmental solutions, inc.	PAGE 1 OF 1 PAGES				
SITE LOCATION: Gan Eden Estates	SCREEN SIZE & TYPE: 2" PVC				
Thompson, NY	SLOT NO.: 20 SETTING: 2 - 23 ftbg				
DATE COMPLETED: 7/7/08	SAND PACK SIZE & TYPE: No. 2				
DRILLING COMPANY: ADT, Inc.	SETTING: 2 - 23ftbg				
Troy, NY	CASING SIZE & TYPE: 2" PVC				
DRILLING METHOD: Hollow Stem Auger – 4 ¾"	SETTING: 3ftbg – 3 ft above grade				
SAMPLING METHOD: Split Spoon – 2"	SEAL TYPE: Bentonite				
OBSERVER: WAC	SETTING:				
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Clean cuttings				
ELEVATION OF RP:	STATIC WATER LEVEL:				
STICK-UP: 2' Steel Casing	DEVELOPMENT METHOD:				
	DURATION: – YIELD: –				
REMARKS: Start: 11:30 Finish: 13:30					
	cuttings G = grab ST = shelby tube = feet below grade MC = macro core sampler				

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
5	7	SS	NA	-	-	SAND; fine to medium; brown; moist
10	12	SS	12-15-18-14	1	-	SAND; fine to medium; brown; GRADES to SAND; coarse and GRAVEL; fine to coarse; wet @ 7.5 ftbg

APPENDIX 5:

Water Quality Sampling Results

Friday, November 11, 2016

Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

Project ID: GAN EDEN ESTATES Sample ID#s: BV60751 - BV60754

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 11, 2016

SDG I.D.: GBV60751

Sample BV60751 was received past hold time for Heterotrophic Plate Count (SM9215B). Sample BV60752 was received past hold time for Heterotrophic Plate Count (SM9215B). Sample BV60753 was received past hold time for Heterotrophic Plate Count (SM9215B).

ACC NE O ACCORD NI

Time

11:45

9:46

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

November 11, 2016

Sample Information

Matrix:	DRINKING WATER
Location Code:	HES-NY
Rush Request:	Standard
P.O.#:	

Custody Informat	stody Information Date					
Collected by:	SV	10/20/16				
Received by:	LB	10/21/16				
Analyzed by:	see "By" below					

Laboratory Data

SDG ID: GBV60751 Phoenix ID: BV60751

Project ID:	GAN EDEN ESTATES
Client ID:	TW-3

		RL/							_	D (
Parameter	Result	PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference	
Escherichia Coli	<1	1	1	MPN/100 m	ls	0		10/21/16 10:15	KDB/KD	3 SM9223B-04	
Heterotrophic Plate Count	134	0	1	CFU/ml				10/21/16 12:05	RM/RS	SM9215B-04	
Total Coliforms	16	1	1	MPN/100 m	ls	0		10/21/16 10:15	KDB/KD	3 SW9223B	
Hardness (CaCO3)	71.7	0.1	1	mg/L				10/26/16		E200.7	
Alkalinity-CaCO3	40	20.0	1	mg/L				10/25/16	RR/EG	SM2320B-97	
Chloride	52.2	3.0	1	mg/L			250	10/21/16	BS/EG	E300.0	
Color, Apparent	< 1	1	1	Color Units	S		15	10/21/16 20:30	DH/KDB	SM2120B-01	
Cyanide, Free	< 0.005	0.005	1	mg/L		0.2		10/27/16	EG	E335.4/SW9014	
Fluoride	< 0.10	0.10	1	mg/L		4		10/21/16	BS/EG	E300.0	
Langelier Index	-2.15		1	pH units				10/25/16	SB	SM2330B-05	1
Nitrite as Nitrogen	< 0.004	0.004	1	mg/L		1		10/21/16 19:47	BS/EG	E300.0	
Nitrate as Nitrogen	0.47	0.05	1	mg/L		10		10/21/16 19:47	BS/EG	E300.0	
Odor at 60 Degrees C	< 1	1	1	T.O.N.			3	10/21/16 17:15	0	SM2150B-97	
рН	6.72	0.10	1	pH Units			6.5-8.5	10/25/16 03:21	RR/EG	SM4500-H B-00	1
Sulfate	3.9	3.0	1	mg/L			250	10/21/16	BS/EG	E300.0	
Total Cyanide (Drinking water)	< 0.005	0.005	1	mg/L		0.2		10/24/16	EG	E335.4	
Tot. Diss. Solids	140	10	1	mg/L			500	10/25/16	KH	SM2540C-97	
Turbidity	1.12	0.20	1	NTU			5	10/21/16 22:53	RWR	SM2130B-01	
Silver	< 0.001	0.001	1	mg/L			0.1	10/22/16	LK	E200.7	
Arsenic	< 0.0005	0.0005	1	mg/L		0.01		10/26/16	RS/TH	E200.9/SM3113B-10	
Barium	0.257	0.001	1	mg/L		2		10/22/16	LK	E200.7	
Beryllium	< 0.0003	0.0003	1	mg/L		0.004		10/22/16	LK	E200.7	
Calcium	20.6	0.005	1	mg/L				10/22/16	LK	E200.7	
Cadmium	< 0.001	0.001	1	mg/L		0.005		10/22/16	LK	E200.7	
Chromium	< 0.001	0.001	1	mg/L		0.1		10/22/16	LK	E200.7	
Copper	0.013	0.002	1	mg/L	1.3			10/22/16	LK	E200.7	
Iron	0.31	0.01	1	mg/L			0.3	10/22/16	LK	E200.7	
*** Iron exceeds Secondary Goa	l 0.3 ***										

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference
Mercury	< 0.0002	0.0002	1	mg/L		0.002		10/24/16	RS	E245.1
<i>l</i> agnesium	4.93	0.005	1	mg/L				10/22/16	LK	E200.7
langanese	0.073	0.001	1	mg/L			0.05	10/22/16	LK	E200.7
*** Manganese exceeds Secor	dary Goal 0.05 *	***								
Sodium	13.1	0.1	1	mg/L				10/25/16	TH	E200.7
lickel	0.002	0.001	1	mg/L				10/23/16	LK	E200.7
ead	0.0022	0.0010	1	mg/L	0.015			10/22/16	LK	E200.5
ntimony	< 0.0008	0.0008	1	mg/L		0.006		10/25/16	RS	E200.9/SM3113B-10
elenium	< 0.001	0.001	1	mg/L		0.05		10/24/16	RS	E200.9/SM3113B-10
hallium	< 0.0007	0.0007	1	mg/L		0.002		10/24/16	RS	E200.9/SM3113B-10
inc	0.063	0.001	1	mg/L			5	10/22/16	LK	E200.7
xtraction for Pesticides	Completed							10/25/16	1/1	E507
xtraction for 525.2	Completed							10/25/16	E/E	E525.2
xtraction for Diquat	Completed							10/25/16	E/E	E549
xtraction for Haloacetic Acids	Completed							10/30/16	D/K	E552.2
lercury DW Digestion	Completed							10/24/16	W/W	E245.1
xtraction of DW Pesticides	Completed							10/25/16	I/I	E508
xtraction of DW Herbicides	Completed							10/30/16	K/D	E515
otal Metal Digestion	Completed							10/21/16	CB/G/C	з Е200.9
otal Metal Digestion	Completed							10/21/16	CB/G/C	з E200.5/E200.7
DB and DBCP Analys	<u>sis</u>									
2-Dibromo-3-Chloropropane (DBCP)	ND	0.02	1	ug/L		0.2		10/25/16	JRB	E504.1
2-Dibromoethane (EDB)	ND	0.01	1	ug/L		0.02		10/25/16	JRB	E504.1
Drganophosphorus Po	esticides									
lachlor	ND	0.10	1	ug/L		2		10/29/16	CE	E507
trazine	ND	0.10	1	ug/L		3		10/29/16	CE	E507
utachlor	ND	0.10	1	ug/L				10/29/16	CE	E507
letolachlor	ND	0.10	1	ug/L				10/29/16	CE	E507
letribuzin	ND	0.10	1	ug/L				10/29/16	CE	E507
imazine	ND	0.070	1	ug/L		4		10/29/16	CE	E507
A/QC Surrogates				0						
1,3 Dimethyl-2-nitrobenzene	87		1	%	NA	NA	NA	10/29/16	CE	70 - 130 %
<u>Pesticides</u>										
ldrin	ND	0.010	1	ug/L				10/26/16	CE	E508
hlordane	ND	0.010	1	ug/L		2		10/26/16	CE	E508
ieldrin	ND	0.010	1	ug/L		-		10/26/16	CE	E508
ndrin	ND	0.010	1	ug/L		2		10/26/16	CE	E508
eptachlor	ND	0.010	1	ug/L		0.4		10/26/16	CE	E508
eptachlor Epoxide	ND	0.010	1	ug/L		0.4		10/26/16	CE	E508
exachlorobenzene	ND	0.010	1	ug/L		1		10/26/16	CE	E508
exachlorocyclopentadiene	ND	0.010	1	ug/L		50		10/26/16	CE	E508
ndane	ND	0.010	1	ug/∟ ug/L		0.2		10/26/16	CE	E508
	ND	0.010	1	ug/∟ ug/L		0.2 40		10/26/16	CE	E508
lethoxychlor ronachlor	ND	0.010	1			40		10/26/16	CE	E508 E508
ropachlor	ND			ug/L		0				
	UNI	1.0	1	ug/L		3		10/26/16	CE	E508
A/QC Surrogates	75			0/	N 1.4	N1.4	N 1 A	10/00/10	05	70 400 0/
DCBP (Surrogate Rec)	75		1	%	NA	NA	NA	10/26/16	CE	70 - 130 %

Parameter	Result	RL/ PQL	DIL	Units	AI	MCI	MCLG Date/Time	By	Reference	
	rtooun	, dL	DIE	Ormo	7.2	MOL		Dy		
PCB Screen										
PCB-1016 (screen)	ND	0.080	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1221 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1232 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1242 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1248 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1254 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1260 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1262 (screen)	ND	0.10	1	ug/l			10/25/16	AW	E508	1
PCB-1268 (screen)	ND	0.10	1	ug/l			10/25/16	AW	E508	1
QA/QC Surrogates										
%DCBP (Surrogate Rec)	84		1	%	NA	NA	NA 10/25/16	AW	30 - 150 %	
<u>Herbicides</u>										
2,4,5-T	ND	0.50	1	ug/L			11/03/16	CE	E515.3	1
2,4,5-TP	ND	0.20	1	ug/L		50	11/03/16	CE	E515.3	
2,4-D	ND	0.10	1	ug/L		70	11/03/16	CE	E515.3	
Dalapon	ND	1.0	1	ug/L		200	11/03/16	CE	E515.3	
Dicamba	ND	0.50	1	ug/L			11/03/16	CE	E515.3	
Dichloroprop	ND	0.50	1	ug/L			11/03/16	CE	E515.3	1
Dinoseb	ND	0.20	1	ug/L		7	11/03/16	CE	E515.3	
Pentachlorophenol	ND	0.040	1	ug/L		1	11/03/16	CE	E515.3	
Picloram	ND	0.10	1	ug/L		500	11/03/16	CE	E515.3	
QA/QC Surrogates										
% DCAA	87		1	%	NA	NA	NA 11/03/16	CE	70 - 130 %	
<u>Volatiles</u>										
1,1,1,2-Tetrachloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1,1-Trichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1,2,2-Tetrachloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1,2-Trichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1-Dichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1-Dichloropropene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,3-Trichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,3-Trichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,4-Trichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,4-Trimethylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2-Dichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2-Dichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2-Dichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,3,5-Trimethylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,3-Dichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,3-Dichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,4-Dichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
2,2-Dichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
2-Chlorotoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
4-Chlorotoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
Benzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	

Client ID: TW-3

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG Date/Time	Ву	Reference
Bromobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromochloromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromodichloromethane	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Bromoform	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Bromomethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Carbon tetrachloride	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chloroform	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Chloromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
cis-1,2-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
cis-1,3-Dichloropropene	ND	0.40	1	ug/L		5	10/21/16	HM	E524.2
Dibromochloromethane	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Dibromomethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Dichlorodifluoromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Ethylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Hexachlorobutadiene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Isopropylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
m&p-Xylene	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Methyl t-butyl ether (MTBE)	ND	0.50	1	ug/L		10	10/21/16	HM	E524.2
Methylene chloride	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Naphthalene	ND	0.50	1	ug/L			10/21/16	HM	E524.2
n-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
n-Propylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
o-Xylene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
p-lsopropyltoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
sec-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Styrene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
tert-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Tetrachloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Toluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Total Trihalomethanes	ND	0.50	1	ug/L		80	10/21/16	HM	E524.2
Total Xylenes	ND	0.50	1	ug/L		10000	10/21/16	HM	E524.2
trans-1,2-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
trans-1,3-Dichloropropene	ND	0.40	1	ug/L		5	10/21/16	HM	E524.2
Trichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Trichlorofluoromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Vinyl chloride	ND	0.50	1	ug/L		2	10/21/16	HM	E524.2
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	83		1	%	NA	NA	NA 10/21/16	HM	70 - 130 %
% Bromofluorobenzene	83		1	%	NA	NA	NA 10/21/16	HM	70 - 130 %
Semivolatile Organic									
Benzo(a)pyrene	ND	0.02	1	ug/L		0.2	10/26/16	MH	E525.3
Bis(2-ethylhexyl)adipate	ND	0.60	1	ug/L		400	10/26/16	MH	E525.3
Bis(2-ethylhexyl)phthalate	ND	0.60	1	ug/L		6	10/26/16	MH	E525.3
QA/QC Surrogates									
% 1,3-Dimethyl-2-nitrobenzene	88		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %
% benzo(a)pyrene-d12	89		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %
% Triphenylphosphate	103		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %

		RL/									
Parameter	Result	PQL	DIL	Units	AL	MCL	MCLG	Date/Time	Ву	Reference	
Carbamates HPLC											
3-Hydroxycarbofuran	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Aldicarb	ND	0.50	1	ug/L		3		10/30/16	RM	E531.2	
Aldicarb Sulfone	ND	0.80	1	ug/L		2		10/30/16	RM	E531.2	
Aldicarb Sulfoxide	ND	0.50	1	ug/L		4		10/30/16	RM	E531.2	
Carbaryl	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Carbofuran	ND	0.90	1	ug/L		40		10/30/16	RM	E531.2	
Methomyl	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Oxamyl	ND	2.0	1	ug/L		200		10/30/16	RM	E531.2	
QA/QC Surrogates				Ū							
% BDMC	76		1	%	NA	NA	NA	10/30/16	RM	70 - 130 %	
<u>Diquat</u>											
Diquat	ND	0.40	1	ug/L		20		10/27/16	RM	E549	
Haloacetic Acids											
Bromochloroacetic Acid	ND	1.0	1	ug/L				11/02/16	PS	E552.2	
Dibromoacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Dichloroacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Monobromoacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Monochloroacetic Acid	ND	2.0	1	ug/L		60		11/02/16	PS	E552.2	
Total Haloacetic Acids	ND	1.0	1	ug/L				11/02/16	PS	E552.2	1
Trichloroacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
QA/QC Surrogates											
% 2,3-DBPA	81		1	%	NA	NA	NA	11/02/16	PS	70 - 130 %	
Glyphosate	ND	6.0	1	ug/L		700		11/01/16	RM	E547	
Propylene Glycol	ND	7.0	1	mg/L				10/26/16	JRB	SW8015D MOD/1671	1
Endothall											
Endothall	ND	9.0		ug/L		100		10/27/16	*	E548.1	С
2,3,7,8-TCDD	ND	5.00		pg/L				11/04/16	*	E1613B	С
Gross Alpha Water	ND ± 2.05	3		pci/L		15		11/09/16	*	E900.0	С
Gross Beta Water	ND ± 1.31	4		pci/L				11/09/16	*	E900.0	С
Radium 226	ND ± 0.13	1		pci/L		5		11/08/16	*	7500 Ra B/903.0	С
Radium 228	ND ± 0.29	1		pci/L		5		11/07/16	*	7500 Ra D/904.0	С
Uranium, Total	ND	1.0		ug/L		30		10/31/16	*	E200.8	С

Project ID: GAN EDEN ESTATES Phoenix I.D.: BV60751 Client ID: TW-3 RL/ Parameter Result PQL DIL Units AL MCL MCLG Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

* See Attached.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

2,3,7,8-TCDD (E1613B) was analyzed by NY certified lab #11647. Gross Alpha Water (E900.0), Gross Beta Water (E900.0), Radium 226 (7500 Ra B/903.0), Radium 228 (7500 Ra D/904.0), Uranium, Total (E200.8) were analyzed by NY certified lab #11777. Endothall (E548.1) was analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director November 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

NY # 11301

Time

11:00

9:46

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

November 11, 2016

Sample Information **Custody Information** Date **DRINKING WATER** Collected by: SV 10/20/16 Matrix: Received by: Location Code: **HES-NY** LB 10/21/16 Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GBV60751 Phoenix ID: BV60752

Project ID:	GAN EDEN ESTATES
Client ID:	TW-5

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference	
Escherichia Coli	<1	1		MPN/100 m		0			· ·	3SM9223B-04	_
Heterotrophic Plate Count	3	0	1	CFU/ml		Ū		10/21/16 12:05		SM9215B-04	
Total Coliforms	<1	1	-	MPN/100 m	ls	0		10/21/16 10:15			
Hardness (CaCO3)	53.8	0.1	1	mg/L		°,		10/26/16	REBREE	E200.7	
Alkalinity-CaCO3	67	20.0	1	mg/L				10/25/16	RR/FG	SM2320B-97	
Chloride	13.1	3.0	1	mg/L			250	10/21/16		E300.0	
Color, Apparent	< 1	1	1	Color Unit	S		15	10/21/16 20:30	DH/KDB	SM2120B-01	
Cyanide, Free	< 0.005	0.005	1	mg/L		0.2	-	10/27/16	EG	E335.4/SW9014	
Fluoride	< 0.10	0.10	1	mg/L		4		10/21/16	BS/EG	E300.0	
Langelier Index	-1.49		1	pH units				10/25/16	SB	SM2330B-05	1
Nitrite as Nitrogen	< 0.004	0.004	1	mg/L		1		10/21/16 19:58	BS/EG	E300.0	
Nitrate as Nitrogen	0.16	0.05	1	mg/L		10		10/21/16 19:58	BS/EG	E300.0	
Odor at 60 Degrees C	< 1	1	1	T.O.N.			3	10/21/16 17:15	Ο	SM2150B-97	
рH	7.22	0.10	1	pH Units			6.5-8.5	10/25/16 03:24	RR/EG	SM4500-H B-00	1
Sulfate	5.7	3.0	1	mg/L			250	10/21/16	BS/EG	E300.0	
Total Cyanide (Drinking water)	< 0.005	0.005	1	mg/L		0.2		10/24/16	EG	E335.4	
Tot. Diss. Solids	92	10	1	mg/L			500	10/25/16	КH	SM2540C-97	
Turbidity	0.86	0.20	1	NTU			5	10/21/16 22:54	RWR	SM2130B-01	
Silver	< 0.001	0.001	1	mg/L			0.1	10/22/16	LK	E200.7	
Arsenic	< 0.0005	0.0005	1	mg/L		0.01		10/26/16	RS/TH	E200.9/SM3113B-10	
Barium	0.126	0.001	1	mg/L		2		10/22/16	LK	E200.7	
Beryllium	< 0.0003	0.0003	1	mg/L		0.004		10/22/16	LK	E200.7	
Calcium	16.7	0.005	1	mg/L				10/22/16	LK	E200.7	
Cadmium	< 0.001	0.001	1	mg/L		0.005		10/22/16	LK	E200.7	
Chromium	< 0.001	0.001	1	mg/L		0.1		10/22/16	LK	E200.7	
Copper	< 0.002	0.002	1	mg/L	1.3			10/22/16	LK	E200.7	
Iron	0.03	0.01	1	mg/L			0.3	10/22/16	LK	E200.7	
Mercury	< 0.0002	0.0002	1	mg/L		0.002		10/24/16	RS	E245.1	

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	Ву	Reference
Magnesium	2.95	0.005	1	mg/L				10/22/16	LK	E200.7
Manganese	0.001	0.001	1	mg/L			0.05	10/22/16	LK	E200.7
Sodium	10.5	0.1	1	mg/L				10/25/16	TH	E200.7
Nickel	< 0.001	0.001	1	mg/L				10/22/16	LK	E200.7
Lead	< 0.0010	0.0010	1	mg/L	0.015			10/22/16	LK	E200.5
Antimony	< 0.0008	0.0008	1	mg/L		0.006		10/25/16	RS	E200.9/SM3113B-10
Selenium	< 0.001	0.001	1	mg/L		0.05		10/24/16	RS	E200.9/SM3113B-10
Thallium	< 0.0007	0.0007	1	mg/L		0.002		10/24/16	RS	E200.9/SM3113B-10
Zinc	0.061	0.001	1	mg/L			5	10/22/16	LK	E200.7
Extraction for Pesticides	Completed							10/25/16	1/1	E507
Extraction for 525.2	Completed							10/25/16	E/E	E525.2
Extraction for Diquat	Completed							10/25/16	E/E	E549
Extraction for Haloacetic Acids	Completed							10/30/16	D/K	E552.2
Mercury DW Digestion	Completed							10/24/16	W/W	E245.1
Extraction of DW Pesticides	Completed							10/25/16	I/I	E508
Extraction of DW Herbicides	Completed							10/30/16	K/D	E515
Total Metal Digestion	Completed							10/21/16	CB/G/C	в E200.9
Total Metal Digestion	Completed							10/21/16	CB/G/C	B E200.5/E200.7
EDB and DBCP Analysis	<u>s</u>									
1,2-Dibromo-3-Chloropropane (DBCP)	ND	0.02	1	ug/L		0.2		10/25/16	JRB	E504.1
1,2-Dibromoethane (EDB)	ND	0.01	1	ug/L		0.02		10/25/16	JRB	E504.1
Organophosphorus Pes	sticides									
Alachlor	ND	0.10	1	ug/L		2		10/29/16	CE	E507
Atrazine	ND	0.10	1	ug/L		3		10/29/16	CE	E507
Butachlor	ND	0.10	1	ug/L				10/29/16	CE	E507
Metolachlor	ND	0.10	1	ug/L				10/29/16	CE	E507
Metribuzin	ND	0.10	1	ug/L				10/29/16	CE	E507
Simazine	ND	0.070	1	ug/L		4		10/29/16	CE	E507
QA/QC Surrogates										
% 1,3 Dimethyl-2-nitrobenzene	83		1	%	NA	NA	NA	10/29/16	CE	70 - 130 %
Pesticides										
Aldrin	ND	0.010	1	ug/L				10/25/16	CE	E508
Chlordane	ND	0.010	1	ug/L		2		10/25/16	CE	E508
Dieldrin	ND	0.010	1	ug/L				10/25/16	CE	E508
Endrin	ND	0.010	1	ug/L		2		10/25/16	CE	E508
Heptachlor	ND	0.010	1	ug/L		0.4		10/25/16	CE	E508
Heptachlor Epoxide	ND	0.010	1	ug/L		0.2		10/25/16	CE	E508
Hexachlorobenzene	ND	0.010	1	ug/L		1		10/25/16	CE	E508
Hexachlorocyclopentadiene	ND	0.010	1	ug/L		50		10/25/16	CE	E508
Lindane	ND	0.010	1	ug/L		0.2		10/25/16	CE	E508
Methoxychlor	ND	0.010	1	ug/L		40		10/25/16	CE	E508
Propachlor	ND	0.050	1	ug/L				10/25/16	CE	E508
Toxaphene	ND	1.0	1	ug/L		3		10/25/16	CE	E508
QA/QC Surrogates			•	~g, L		5		,, 10	02	
%DCBP (Surrogate Rec)	74		1	%	NA	NA	NA	10/25/16	CE	70 - 130 %

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG Date/Time	By	Reference	
PCB Screen										
PCB-1016 (screen)	ND	0.080	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1221 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1232 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1242 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1248 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1254 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1260 (screen)	ND	0.10	1	ug/l		0.5	10/25/16	AW	E508	1
PCB-1262 (screen)	ND	0.10	1	ug/l			10/25/16	AW	E508	1
PCB-1268 (screen)	ND	0.10	1	ug/l			10/25/16	AW	E508	1
QA/QC Surrogates										
%DCBP (Surrogate Rec)	86		1	%	NA	NA	NA 10/25/16	AW	30 - 150 %	
<u>Herbicides</u>										
2,4,5-T	ND	0.50	1	ug/L			11/03/16	CE	E515.3	1
2,4,5-TP	ND	0.20	1	ug/L		50	11/03/16	CE	E515.3	
2,4-D	ND	0.10	1	ug/L		70	11/03/16	CE	E515.3	
Dalapon	ND	1.0	1	ug/L		200	11/03/16	CE	E515.3	
Dicamba	ND	0.50	1	ug/L			11/03/16	CE	E515.3	
Dichloroprop	ND	0.50	1	ug/L			11/03/16	CE	E515.3	1
Dinoseb	ND	0.20	1	ug/L		7	11/03/16	CE	E515.3	
Pentachlorophenol	ND	0.040	1	ug/L		1	11/03/16	CE	E515.3	
Picloram	ND	0.10	1	ug/L		500	11/03/16	CE	E515.3	
QA/QC Surrogates										
% DCAA	88		1	%	NA	NA	NA 11/03/16	CE	70 - 130 %	
<u>Volatiles</u>										
1,1,1,2-Tetrachloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1,1-Trichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1,2,2-Tetrachloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1,2-Trichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1-Dichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,1-Dichloropropene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,3-Trichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,3-Trichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,4-Trichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2,4-Trimethylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2-Dichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2-Dichloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,2-Dichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,3,5-Trimethylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,3-Dichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,3-Dichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
1,4-Dichlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
2,2-Dichloropropane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
2-Chlorotoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
4-Chlorotoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	
Benzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2	

Client ID: TW-5

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG Date/Time	Ву	Reference
Bromobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromochloromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromodichloromethane	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Bromoform	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Bromomethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Carbon tetrachloride	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chloroform	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Chloromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
cis-1,2-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
cis-1,3-Dichloropropene	ND	0.40	1	ug/L		5	10/21/16	HM	E524.2
Dibromochloromethane	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Dibromomethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Dichlorodifluoromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Ethylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Hexachlorobutadiene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Isopropylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
m&p-Xylene	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Methyl t-butyl ether (MTBE)	ND	0.50	1	ug/L		10	10/21/16	HM	E524.2
Methylene chloride	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Naphthalene	ND	0.50	1	ug/L			10/21/16	HM	E524.2
n-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
n-Propylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
o-Xylene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
p-lsopropyltoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
sec-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Styrene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
tert-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Tetrachloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Toluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Total Trihalomethanes	ND	0.50	1	ug/L		80	10/21/16	HM	E524.2
Total Xylenes	ND	0.50	1	ug/L		10000	10/21/16	HM	E524.2
trans-1,2-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
trans-1,3-Dichloropropene	ND	0.40	1	ug/L		5	10/21/16	HM	E524.2
Trichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Trichlorofluoromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Vinyl chloride	ND	0.50	1	ug/L		2	10/21/16	HM	E524.2
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	85		1	%	NA	NA	NA 10/21/16	HM	70 - 130 %
% Bromofluorobenzene	84		1	%	NA	NA	NA 10/21/16	HM	70 - 130 %
Semivolatile Organic									
Benzo(a)pyrene	ND	0.02	1	ug/L		0.2	10/26/16	MH	E525.3
Bis(2-ethylhexyl)adipate	ND	0.60	1	ug/L		400	10/26/16	MH	E525.3
Bis(2-ethylhexyl)phthalate	ND	0.60	1	ug/L		6	10/26/16	MH	E525.3
QA/QC Surrogates									
% 1,3-Dimethyl-2-nitrobenzene	77		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %
% benzo(a)pyrene-d12	85		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %
% Triphenylphosphate	93		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %

		.									
Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference	
Carbomates UDL C											
Carbamates HPLC											
3-Hydroxycarbofuran	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Aldicarb	ND	0.50	1	ug/L		3		10/30/16	RM	E531.2	
Aldicarb Sulfone	ND	0.80	1	ug/L		2		10/30/16	RM	E531.2	
Aldicarb Sulfoxide	ND	0.50	1	ug/L		4		10/30/16	RM	E531.2	
Carbaryl	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Carbofuran	ND	0.90	1	ug/L		40		10/30/16	RM	E531.2	
Methomyl	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Oxamyl	ND	2.0	1	ug/L		200		10/30/16	RM	E531.2	
QA/QC Surrogates											
% BDMC	91		1	%	NA	NA	NA	10/30/16	RM	70 - 130 %	
<u>Diquat</u>											
Diquat	ND	0.40	1	ug/L		20		10/27/16	RM	E549	
Haloacetic Acids											
Bromochloroacetic Acid	ND	1.0	1	ug/L				11/02/16	PS	E552.2	
Dibromoacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Dichloroacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Monobromoacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Monochloroacetic Acid	ND	2.0	1	ug/L		60		11/02/16	PS	E552.2	
Total Haloacetic Acids	ND	1.0	1	ug/L				11/02/16	PS	E552.2	1
Trichloroacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
QA/QC Surrogates											
% 2,3-DBPA	78		1	%	NA	NA	NA	11/02/16	PS	70 - 130 %	
Glyphosate	ND	6.0	1	ug/L		700		11/01/16	RM	E547	
Propylene Glycol	ND	7.0	1	mg/L				10/26/16	JRB	SW8015D MOD/1671	1
Endothall											
Endothall	ND	9.0		ug/L		100		10/27/16	*	E548.1	С
2,3,7,8-TCDD	ND	5.00		pg/L				11/04/16	*	E1613B	С
Gross Alpha Water	ND ± 1.64	3		pci/L		15		11/01/16	*	E900.0	С
Gross Beta Water	ND ± 2.08	4		pci/L		-		11/01/16	*	E900.0	С
Radium 226	ND ± 0.21	1		pci/L		5		11/08/16	*	7500 Ra B/903.0	С
Radium 228	ND ± 0.39	1		pci/L		5		11/07/16	*	7500 Ra D/904.0	С
Uranium, Total	ND	1.0		ug/L		30		10/31/16	*	E200.8	С
				~g, L							

Project ID: GAN EDEN ESTATES Phoenix I.D.: BV60752 Client ID: TW-5 RL/ Parameter Result PQL DIL Units AL MCL MCLG Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

* See Attached.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

2,3,7,8-TCDD (E1613B) was analyzed by NY certified lab #11647. Gross Alpha Water (E900.0), Gross Beta Water (E900.0), Radium 226 (7500 Ra B/903.0), Radium 228 (7500 Ra D/904.0), Uranium, Total (E200.8) were analyzed by NY certified lab #11777. Endothall (E548.1) was analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director November 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Time

12:45

9:46

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

November 11, 2016

Sample Information

Matrix:	DRINKING WATER
Location Code:	HES-NY
Rush Request:	Standard
P.O.#:	

Custody Inforn	nation	<u>Date</u>
Collected by:	SV	10/20/16
Received by:	LB	10/21/16
Analyzed by:	see "By" below	

Laboratory Data

SDG ID: GBV60751 Phoenix ID: BV60753

Project ID:	GAN EDEN ESTATES
Client ID:	TW-8

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference	
Escherichia Coli	<1	1	1	MPN/100 m	nls	0		10/21/16 10:15	KDB/KDE	3SM9223B-04	
Heterotrophic Plate Count	599	0	1	CFU/ml				10/21/16 12:05		SM9215B-04	
Total Coliforms	<1	1	1	MPN/100 m	nls	0		10/21/16 10:15	KDB/KDE	3SW9223B	
Hardness (CaCO3)	25.9	0.1	1	mg/L				10/26/16		E200.7	
Alkalinity-CaCO3	61	20.0	1	mg/L				10/25/16	RR/EG	SM2320B-97	
Chloride	13.2	3.0	1	mg/L			250	10/21/16	BS/EG	E300.0	
Color, Apparent	< 1	1	1	Color Unit	s		15	10/21/16 20:30	DH/KDB	SM2120B-01	
Cyanide, Free	< 0.005	0.005	1	mg/L		0.2		10/27/16	EG	E335.4/SW9014	
Fluoride	0.12	0.10	1	mg/L		4		10/21/16	BS/EG	E300.0	
Langelier Index	-1.87		1	pH units				10/25/16	SB	SM2330B-05	1
Nitrite as Nitrogen	< 0.004	0.004	1	mg/L		1		10/21/16 20:08	BS/EG	E300.0	
Nitrate as Nitrogen	0.15	0.05	1	mg/L		10		10/21/16 20:08	BS/EG	E300.0	
Odor at 60 Degrees C	< 1	1	1	T.O.N.			3	10/21/16 17:15	0	SM2150B-97	
рН	7.20	0.10	1	pH Units			6.5-8.5	10/25/16 03:28	RR/EG	SM4500-H B-00	1
Sulfate	7.7	3.0	1	mg/L			250	10/21/16	BS/EG	E300.0	
Total Cyanide (Drinking water)	< 0.005	0.005	1	mg/L		0.2		10/24/16	EG	E335.4	
Tot. Diss. Solids	110	10	1	mg/L			500	10/25/16	KH	SM2540C-97	
Turbidity	9.98	0.20	1	NTU			5	10/21/16 22:55	RWR	SM2130B-01	
*** Turbidity exceeds Secondar	y Goal 5 ***										
Silver	< 0.001	0.001	1	mg/L			0.1	10/22/16	LK	E200.7	
Arsenic	0.0008	0.0005	1	mg/L		0.01		10/26/16	RS/TH	E200.9/SM3113B-10	
Barium	0.081	0.001	1	mg/L		2		10/22/16	LK	E200.7	
Beryllium	< 0.0003	0.0003	1	mg/L		0.004		10/22/16	LK	E200.7	
Calcium	8.39	0.005	1	mg/L				10/22/16	LK	E200.7	
Cadmium	0.001	0.001	1	mg/L		0.005		10/22/16	LK	E200.7	
Chromium	0.001	0.001	1	mg/L		0.1		10/22/16	LK	E200.7	
Copper	0.010	0.002	1	mg/L	1.3			10/22/16	LK	E200.7	

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference
Iron	0.49	0.01	1	mg/L			0.3	10/22/16	LK	E200.7
*** Iron exceeds Secondary Goa	0.3 ***			•						
Mercury	< 0.0002	0.0002	1	mg/L		0.002		10/24/16	RS	E245.1
Magnesium	1.21	0.005	1	mg/L				10/22/16	LK	E200.7
Manganese	0.016	0.001	1	mg/L			0.05	10/22/16	LK	E200.7
Sodium	18.8	0.1	1	mg/L				10/25/16	TH	E200.7
Nickel	< 0.001	0.001	1	mg/L				10/22/16	LK	E200.7
Lead	0.0015	0.0010	1	mg/L	0.015			10/22/16	LK	E200.5
Antimony	< 0.0008	0.0008	1	mg/L		0.006		10/25/16	RS	E200.9/SM3113B-10
Selenium	0.001	0.001	1	mg/L		0.05		10/24/16	RS	E200.9/SM3113B-10
Thallium	< 0.0007	0.0007	1	mg/L		0.002		10/24/16	RS	E200.9/SM3113B-10
Zinc	0.457	0.001	1	mg/L			5	10/22/16	LK	E200.7
Extraction for Pesticides	Completed							10/25/16	1/1	E507
Extraction for 525.2	Completed							10/25/16	E/E	E525.2
Extraction for Diquat	Completed							10/25/16	E/E	E549
Extraction for Haloacetic Acids	Completed							10/30/16	D/K	E552.2
Mercury DW Digestion	Completed							10/24/16	W/W	E245.1
Extraction of DW Pesticides	Completed							10/25/16	1/1	E508
Extraction of DW Herbicides	Completed							10/30/16	K/D	E515
Total Metal Digestion	Completed							10/21/16	CB/G/CI	з Е200.9
Total Metal Digestion	Completed							10/21/16	CB/G/CI	в E200.5/E200.7
EDB and DBCP Analysis	S									
1,2-Dibromo-3-Chloropropane (DBCP)	ND	0.02	1	ug/L		0.2		10/25/16	JRB	E504.1
1,2-Dibromoethane (EDB)	ND	0.01	1	ug/L		0.02		10/25/16	JRB	E504.1
Organophosphorus Pes	ticides									
Alachlor	ND	0.10	1	ug/L		2		10/29/16	CE	E507
Atrazine	ND	0.10	1	ug/L		3		10/29/16	CE	E507
Butachlor	ND	0.10	1	ug/L		Ū		10/29/16	CE	E507
Metolachlor	ND	0.10	1	ug/L				10/29/16	CE	E507
Metribuzin	ND	0.10	1	ug/L				10/29/16	CE	E507
Simazine	ND	0.070	1	ug/L		4		10/29/16	CE	E507
QA/QC Surrogates	ne -	0.070	•	ug/ L				10/20/10	02	2001
% 1,3 Dimethyl-2-nitrobenzene	92		1	%	NA	NA	NA	10/29/16	CE	70 - 130 %
Pesticides										
Aldrin	ND	0.010	1	ug/L				10/25/16	CE	E508
Chlordane	ND	0.010	1	ug/L		2		10/25/16	CE	E508
Dieldrin	ND	0.010	1	ug/L				10/25/16	CE	E508
Endrin	ND	0.010	1	ug/L		2		10/25/16	CE	E508
Heptachlor	ND	0.010	1	ug/L		0.4		10/25/16	CE	E508
Heptachlor Epoxide	ND	0.010	1	ug/L		0.2		10/25/16	CE	E508
Hexachlorobenzene	ND	0.010	1	ug/L		1		10/25/16	CE	E508
Hexachlorocyclopentadiene	ND	0.010	1	ug/L		50		10/25/16	CE	E508
Lindane	ND	0.010	1	ug/L		0.2		10/25/16	CE	E508
Methoxychlor	ND	0.010	1	ug/L		40		10/25/16	CE	E508
Propachlor	ND	0.050	1	ug/L				10/25/16	CE	E508
Toxaphene	ND	1.0	1	ug/L		3		10/25/16	CE	E508
QA/QC Surrogates			-	- 3 -		-		-		

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	Ву	Reference	
%DCBP (Surrogate Rec)	80		1	%	NA	NA	NA	10/25/16	CE	70 - 130 %	
PCB Screen											
PCB-1016 (screen)	ND	0.080	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1221 (screen)	ND	0.10	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1232 (screen)	ND	0.10	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1242 (screen)	ND	0.10	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1248 (screen)	ND	0.10	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1254 (screen)	ND	0.10	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1260 (screen)	ND	0.10	1	ug/l		0.5		10/25/16	AW	E508	1
PCB-1262 (screen)	ND	0.10	1	ug/l				10/25/16	AW	E508	1
PCB-1268 (screen)	ND	0.10	1	ug/l				10/25/16	AW	E508	1
QA/QC Surrogates											
%DCBP (Surrogate Rec)	88		1	%	NA	NA	NA	10/25/16	AW	30 - 150 %	
Herbicides											
2,4,5-T	ND	0.50	1	ug/L				11/03/16	CE	E515.3	1
2,4,5-TP	ND	0.20	1	ug/L		50		11/03/16	CE	E515.3	
2,4-D	ND	0.10	1	ug/L		70		11/03/16	CE	E515.3	
Dalapon	ND	1.0	1	ug/L		200		11/03/16	CE	E515.3	
Dicamba	ND	0.50	1	ug/L				11/03/16	CE	E515.3	
Dichloroprop	ND	0.50	1	ug/L				11/03/16	CE	E515.3	1
Dinoseb	ND	0.20	1	ug/L		7		11/03/16	CE	E515.3	
Pentachlorophenol	ND	0.040	1	ug/L		1		11/03/16	CE	E515.3	
Picloram	ND	0.10	1	ug/L		500		11/03/16	CE	E515.3	
QA/QC Surrogates				. 3							
% DCAA	90		1	%	NA	NA	NA	11/03/16	CE	70 - 130 %	
Volatiles											
1,1,1,2-Tetrachloroethane	ND	0.50	1	ug/L		5		10/21/16	НМ	E524.2	
1,1,1-Trichloroethane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,1,2,2-Tetrachloroethane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,1,2-Trichloroethane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,1-Dichloroethane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,1-Dichloroethene	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,1-Dichloropropene	ND	0.50	1	ug/L		5		10/21/16	НМ	E524.2	
1,2,3-Trichlorobenzene	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,2,3-Trichloropropane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,2,4-Trichlorobenzene	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,2,4-Trimethylbenzene	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,2-Dichlorobenzene	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,2-Dichloroethane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,2-Dichloropropane	ND	0.50	1	ug/L		5		10/21/16	НМ	E524.2	
1,3,5-Trimethylbenzene	ND	0.50	1	ug/L		5		10/21/16	НМ	E524.2	
1,3-Dichlorobenzene	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1,3-Dichloropropane	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
	ND	0.50	1	ug/L		5		10/21/16	HM	E524.2	
1 4-1 JICDIOTODEDZEDE		0.00	•	~g, L		-					
1,4-Dichlorobenzene	ND	0.50	1	ua/l		5		10/21/16	нм	E524.2	
2,2-Dichloropropane 2-Chlorotoluene	ND ND	0.50 0.50	1 1	ug/L ug/L		5 5		10/21/16 10/21/16	HM HM	E524.2 E524.2	

Client ID: TW-8

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG Date/Time	Ву	Reference
Benzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromochloromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Bromodichloromethane	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Bromoform	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Bromomethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Carbon tetrachloride	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chlorobenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chloroethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Chloroform	ND	0.50	1	ug/L			10/21/16	HM	E524.2
Chloromethane	ND	0.50	1	ug/L		5	10/21/16	НМ	E524.2
cis-1,2-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	НМ	E524.2
cis-1,3-Dichloropropene	ND	0.40	1	ug/L		5	10/21/16	НМ	E524.2
Dibromochloromethane	ND	0.50	1	ug/L		-	10/21/16	НМ	E524.2
Dibromomethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Dichlorodifluoromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Ethylbenzene	ND	0.50	1	ug/L		5	10/21/16	НМ	E524.2
Hexachlorobutadiene	ND	0.50	1	ug/L		5	10/21/16	НМ	E524.2
Isopropylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
m&p-Xylene	ND	0.50	1	ug/L		10	10/21/16	HM	E524.2
Methyl t-butyl ether (MTBE)	ND	0.50				5	10/21/16	HM	E524.2
Methylene chloride			1	ug/L		5			
Naphthalene	ND	0.50	1	ug/L		-	10/21/16	HM	E524.2
n-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
n-Propylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
o-Xylene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
p-Isopropyltoluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
sec-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Styrene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
tert-Butylbenzene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Tetrachloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Toluene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Total Trihalomethanes	ND	0.50	1	ug/L		80	10/21/16	HM	E524.2
Total Xylenes	ND	0.50	1	ug/L		10000	10/21/16	HM	E524.2
trans-1,2-Dichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
trans-1,3-Dichloropropene	ND	0.40	1	ug/L		5	10/21/16	HM	E524.2
Trichloroethene	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Trichlorofluoromethane	ND	0.50	1	ug/L		5	10/21/16	HM	E524.2
Vinyl chloride	ND	0.50	1	ug/L		2	10/21/16	HM	E524.2
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	83		1	%	NA	NA	NA 10/21/16	HM	70 - 130 %
% Bromofluorobenzene	85		1	%	NA	NA	NA 10/21/16	HM	70 - 130 %
Semivolatile Organic									
Benzo(a)pyrene	ND	0.02	1	ug/L		0.2	10/26/16	MH	E525.3
Bis(2-ethylhexyl)adipate	ND	0.60	1	ug/L		400	10/26/16	MH	E525.3
Bis(2-ethylhexyl)phthalate	ND	0.60	1	ug/L		6	10/26/16	MH	E525.3
QA/QC Surrogates									
% 1,3-Dimethyl-2-nitrobenzene	81		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %
% benzo(a)pyrene-d12	84		1	%	NA	NA	NA 10/26/16	MH	70 - 130 %
- (- /1 /									

		RL/									
Parameter	Result	PQL	DIL	Units	AL	MCL	MCLG	Date/Time	By	Reference	
% Triphenylphosphate	98		1	%	NA	NA	NA	10/26/16	MH	70 - 130 %	
Carbamates HPLC											
3-Hydroxycarbofuran	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Aldicarb	ND	0.50	1	ug/L		3		10/30/16	RM	E531.2	
Aldicarb Sulfone	ND	0.80	1	ug/L		2		10/30/16	RM	E531.2	
Aldicarb Sulfoxide	ND	0.50	1	ug/L		4		10/30/16	RM	E531.2	
Carbaryl	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Carbofuran	ND	0.90	1	ug/L		40		10/30/16	RM	E531.2	
Methomyl	ND	0.50	1	ug/L				10/30/16	RM	E531.2	
Oxamyl	ND	2.0	1	ug/L		200		10/30/16	RM	E531.2	
QA/QC Surrogates											
% BDMC	93		1	%	NA	NA	NA	10/30/16	RM	70 - 130 %	
<u>Diquat</u>											
Diquat	ND	0.40	1	ug/L		20		10/27/16	RM	E549	
Haloacetic Acids											
Bromochloroacetic Acid	ND	1.0	1	ug/L				11/02/16	PS	E552.2	
Dibromoacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Dichloroacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Monobromoacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
Monochloroacetic Acid	ND	2.0	1	ug/L		60		11/02/16	PS	E552.2	
Total Haloacetic Acids	ND	1.0	1	ug/L				11/02/16	PS	E552.2	1
Trichloroacetic Acid	ND	1.0	1	ug/L		60		11/02/16	PS	E552.2	
QA/QC Surrogates											
% 2,3-DBPA	103		1	%	NA	NA	NA	11/02/16	PS	70 - 130 %	
Glyphosate	ND	6.0	1	ug/L		700		11/01/16	RM	E547	
Propylene Glycol	ND	7.0	1	mg/L				10/26/16	JRB	SW8015D MOD/1671	1
Endothall											
Endothall	ND	9.0		ug/L		100		10/27/16	*	E548.1	С
2,3,7,8-TCDD	ND	5.00		pg/L				11/04/16	*	E1613B	С
Gross Alpha Water	4.34 ± 2.24	3		pci/L		15		11/09/16	*	E900.0	С
Gross Beta Water	ND ± 1.93	4		pci/L				11/09/16	*	E900.0	С
Radium 226	ND ± 0.13	1		pci/L		5		11/08/16	*	7500 Ra B/903.0	С
Radium 228	ND ± 0.56	1		pci/L		5		11/07/16	*	7500 Ra D/904.0	С
Uranium, Total	2.94	1.0		ug/L		30		10/31/16	*	E200.8	С

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

* See Attached.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

2,3,7,8-TCDD (E1613B) was analyzed by NY certified lab #11647. Gross Alpha Water (E900.0), Gross Beta Water (E900.0), Radium 226 (7500 Ra B/903.0), Radium 228 (7500 Ra D/904.0), Uranium, Total (E200.8) were analyzed by NY certified lab #11777. Endothall (E548.1) was analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director November 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report November 11, 2016		FC)R:		Bridge Rd	ental Solutions, Inc. ge Rd				
Sample Information		Custody In	forma	ation		<u>Date</u>	Time			
Matrix: WATER		Collected by	/:	SV		10/20/1	6			
Location Code: HES-NY		Received by	/:	LB		10/21/1	6 9:46			
Rush Request: Standard		Analyzed by	' :	see "By" b	elow					
P.O.#:	Laborate	ory	<u>Data</u>		SDG ID: GBV60751 Phoenix ID: BV60754					
Project ID: GAN EDEN E Client ID: TRIP BLANK	STATES									
Parameter	Result	RL/ PQL	Uni	ts Dilutio	on Date/1	Time B	By Reference			
EDB and DBCP Analysis										
1,2-Dibromo-3-Chloropropane (DBCP)	0.02	ug/	L 1	10/25/1	6 JF	RB E504.1				
1,2-Dibromoethane (EDB)	0.01	ug/	L 1	10/25/1	6 JF	RB E504.1				

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level

Comments:

TRIP BLANK INCLUDED.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director November 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

QA/QC Report

November 11, 2016

QA/QC Data

SDG I.D.: GBV60751

Parameter	Blank	Blk RI	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 363812A (mg/L),	QC Sar	npie ivo	: BV53/1	4 (BV60	/51, B\	/60/52	, BV607	53)					
ICP Metals - Aqueous													
Barium	BRL	0.001				93.0			102			85 - 115	20
Beryllium	BRL	0.0003				96.9			96.6			85 - 115	20
Cadmium	BRL	0.001				94.6			98.0			85 - 115	20
Calcium	BRL	0.01				104			NC			85 - 115	20
Chromium	BRL	0.001				95.5			101			85 - 115	20
Copper	BRL	0.002				97.2			100			85 - 115	20
Iron	BRL	0.01				96.1			100			85 - 115	20
Lead	BRL	0.0010				92.2			96.3			85 - 115	20
Magnesium	BRL	0.01				97.8			92.5			85 - 115	20
Manganese	BRL	0.001				96.7			101			85 - 115	20
Nickel	BRL	0.001				95.2			101			85 - 115	20
Silver	BRL	0.001				91.7			94.7			85 - 115	20
Sodium	BRL	0.1				99.9			NC			85 - 115	20
Comment:													
This batch does not include a dup	licate.												
Additional: LCS acceptance range	e is 85-11	15% MS a	acceptance	e range 7	/5-125%								
QA/QC Batch 363817A (mg/L),	QC Sar	nple No	: BV5899	8 (BV60	751, B\	/60752	, BV607	53)					
Antimony	BRL	0.002				91.7			116			85 - 115	20
Arsenic	BRL	0.001				88.9			107			85 - 115	20
Selenium	BRL	0.001				101			105			85 - 115	20
Thallium	BRL	0.001				89.0			87.6			85 - 115	20
Comment:													
This batch does not include a dup	licate.												
Additional: LCS acceptance range	e is 85-11	15% MS a	acceptance	e range 7	/5-125%								
QA/QC Batch 364024 (mg/L), C	C Sam	ple No: I	BV60767	(BV607	51, BV6	0752	BV6075	3)					
Mercury	BRL	•	<0.0002			100			88.9			85 - 115	20

SDG I.D.: GBV60751

QA/QC Report

November 11, 2016

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 363946 (mg/L), 0 Alkalinity-CaCO3 Comment:	2C Samp BRL	ble No: 5.00	BV53910 71	(BV607 73	51, BV6 NC	0752, 102	BV6075	3)				85 - 115	20
Additional: LCS acceptance range	Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.												
QA/QC Batch 363939 (pH), QC	Sample	No: B	V53910 (E	3V60751	, BV60	752, B\	/60753)						
pH Comment:			7.23	7.04	2.70	99.0						85 - 115	20
Additional: LCS acceptance range	e is 85-11	5% MS	acceptanc	e range 7	5-125%								
QA/QC Batch 363906 (NTU), C	2C Samp	le No:	BV53910	(BV6075	51, BV6	0752, E	3V6075	3)					
Turbidity Comment:	BRL	0.20	0.36	0.41	NC	99.8						85 - 115	20
Additional: LCS acceptance range	e is 85-11	5% MS	acceptanc	e range 7	/5-125%								
QA/QC Batch 364585 (mg/L), (2C Samp	ole No:	BV60378	(BV607	51, BV6	0752,	BV6075	3)					
Free Cyanide Comment:	BRL	0.01	<0.005	<0.01	NC	97.3			97.5			85 - 115	20
Additional: LCS acceptance range	e is 85-11	5% MS	acceptanc	e range 7	5-125%								
QA/QC Batch 363855 (mg/L), (2C Samp	ole No:	BV60752	(BV607	51, BV6	0752,	BV6075	3)					
Total Cyanide (Drinking water)	BRL	0.01	<0.005	<0.01	NC	98.8			100			85 - 115	20
QA/QC Batch 364080 (mg/L), (2C Samp	ole No:	BV60767	(BV607	51, BV6	0752,	BV6075	3)					
Chloride	BRL	3.0	9.2	9.3	NC	92.3			99.7			90 - 110	20
Fluoride	BRL	0.10	<0.10	<0.10	NC	91.8			100			90 - 110	20
Nitrate as Nitrogen	BRL	0.05	0.05	<0.05	NC	103			102			90 - 110	20
Nitrite as Nitrogen	BRL	0.004	<0.004	< 0.004	NC	99.6			90.1			90 - 110	20
Sulfate	BRL	3.0	7.3	7.2	NC	97.9			99.9			90 - 110	20
QA/QC Batch 364204 (mg/L), (2C Samp	ole No:	BV62239	(BV607	51, BV6	0752,	BV6075	3)					
Tot. Diss. Solids Comment:	BRL	10	160	160	0	93.0						85 - 115	20
Additional: LCS acceptance range	e is 85-11	5% MS	acceptanc	e range 7	5-125%								
QA/QC Batch 364180 (mg/L), 0	2C Samp	ble No:	BV63140	(BV607	51, BV6	0752,	BV6075	3)					
Alkalinity-CaCO3 Comment:	BRL	5.00	78	74	NC	104						85 - 115	20
Additional: LCS acceptance range	e is 85-11	5% MS	acceptanc	e range 7	/5-125%								
QA/QC Batch 364177 (pH), QC	Sample	No: B	V63140 (E	3V60751	, BV60	752. B\	/60753)						
pH			8.24	7.53	9.00	99.0						85 - 115	20
Comment:													
Additional: LCS acceptance range	e is 85-11	5% MS	acceptanc	e range 7	/5-125%								

QA/QC Report

November 11, 2016

QA/QC Data

SDG I.D.: GBV60751

- · ·	Disals	Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank		%	%	RPD	%	%	RPD	Limits	Limits	
QA/QC Batch 364196 (ug/L), Q0			51, BV60752, B	V60753	3)						
Semivolatile Organic Con	npoun	<u>ds - Drinking Water</u>									
Benzo(a)pyrene	ND	0.02	92			94	94	0.0	70 - 130	20	
Bis(2-ethylhexyl)adipate	ND	0.60	106			111	111	0.0	70 - 130	20	
Bis(2-ethylhexyl)phthalate	ND	0.60	102			114	99	14.1	70 - 130	20	
% 1,3-Dimethyl-2-nitrobenzene	87	%	92			87	87	0.0	70 - 130	20	
% benzo(a)pyrene-d12	82	%	87			86	85	1.2	70 - 130	20	
% Triphenylphosphate Comment:	98	%	103			100	100	0.0	70 - 130	20	
Tap water, collected and dechlorin	ated in s	ample containers, was used	as the matrix sp	ike and r	natrix sp	oike dup	licate.				
QA/QC Batch 364172 (ug/L), Q	C Samp	le No: BV60120 (BV6075	51, BV60752, B	V60753	3)						
Pesticides - Drinking Wate	<u>er</u>										
a-Chlordane	ND	0.010	91			80			70 - 130	20	
Aldrin	ND	0.010	98			88			70 - 130	20	
Chlordane	ND	0.010	92			81			70 - 130	20	
Dieldrin	ND	0.010	86			76			70 - 130	20	
Endrin	ND	0.010	103			87			70 - 130	20	
g-BHC	ND	0.010	96			84			70 - 130	20	
g-Chlordane	ND	0.010	92			81			70 - 130	20	
Heptachlor	ND	0.010	96			85			70 - 130	20	
Heptachlor epoxide	ND	0.010	93			80			70 - 130	20	
Hexachlorobenzene	ND	0.010	81			75			70 - 130	20	
Hexachlorocyclopentadiene	ND	0.010	63			60			70 - 130	20	l,m
Methoxychlor	ND	0.010	99			90			70 - 130	20	
Propachlor	ND	0.050	83			83			70 - 130	20	
Toxaphene	ND	1.0	NA			NA			70 - 130	20	
% DCBP	72	%	81			71			70 - 130	20	
QA/QC Batch 363844 (ug/L), Q			51, BV60752, B	V60753	8, BV60	754)					
EDB and DBCP Analysis		-									
1,2-Dibromo-3-Chloropropane (DB	ND	0.02	113	112	0.9				70 - 130	20	
1,2-Dibromoethane (EDB) Comment:	ND	0.01	104	103	1.0				70 - 130	20	
This batch consists of a Blank, LC	Sandl(חצי									
QA/QC Batch 364095 (mg/L), Q			51 BV60752 F	31/6075	3)						
<u>Glycols - Drinking Water</u>	o Sum		51, 000752, 1	50075	5)						
Propylene glycol	ND	7.0	122	120	1.7	119	108	9.7	70 - 130	30	
QA/QC Batch 364173 (ug/L), Q											
Organophosphorus Pestic	•	•	, 0, 02, 0	23.30	,						
Alachlor	ND	0.10	96			93			70 - 130	20	
Atrazine	ND	0.10	89			86			70 - 130	20	
Butachlor	ND	0.10	99			97			70 - 130	20	

QA/QC Data

SDG I.D.: GBV60751

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Metolachlor	ND	0.10	95			92			70 - 130	20	
Metribuzin	ND	0.10	97			95			70 - 130	20	
Simazine	ND	0.070	99			97			70 - 130	20	
% 1,3 Dimethyl-2-nitrobenzene	85	%	84			81			70 - 130	20	
QA/QC Batch 364197 (ug/L), Q0	Samp		60752. F	3V60753	3)						
Diquat - Drinking Water	Jump		J0702, L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,						
Diquat	ND	0.40	80			89					
QA/QC Batch 364899 (ug/L), Q0	C Samp	le No: BV60751 (BV60751, BV6	50752, E	3V60753	3)						
Herbicides - Drinking Wat	er										
2,4,5-T	ND	0.50	114			121			70 - 130	20	
2,4,5-TP	ND	0.20	98			105			70 - 130	20	
2,4-D	ND	0.10	110			117			70 - 130	20	
Dalapon	ND	1.0	103			107			70 - 130	20	
Dicamba	ND	0.50	125			118			70 - 130	20	
Dichloroprop	ND	0.50	96			96			70 - 130	20	
Dinoseb	ND	0.20	90 109			90 91			70 - 130	20 20	
	ND	0.20	91			91 94					
Pentachlorophenol									70 - 130	20	
Picloram	ND	0.10	128			138			70 - 130	20	m
% DCAA (Surrogate Rec)	84	%	108			89			70 - 130	20	
QA/QC Batch 364056 (ug/L), Q0	C Samp	le No: BV60751 (BV60751, BV6	50752, E	3V60753	3)						
Volatiles - Drinking Water											
1,1,1,2-Tetrachloroethane	ND	0.50	95	89	6.5				70 - 130	30	
1,1,1-Trichloroethane	ND	0.50	95	88	7.7				70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	101	96	5.1				70 - 130	30	
1,1,2-Trichloroethane	ND	0.50	98	88	10.8				70 - 130	30	
1,1-Dichloroethane	ND	0.50	100	94	6.2				70 - 130	30	
1,1-Dichloroethene	ND	0.50	91	83	9.2				70 - 130	30	
1,1-Dichloropropene	ND	0.40	96	90	6.5				70 - 130	30	
1,2,3-Trichlorobenzene	ND	0.50	101	89	12.6				70 - 130	30	
1,2,3-Trichloropropane	ND	0.50	96	90	6.5				70 - 130	30	
1,2,4-Trichlorobenzene	ND	0.50	94	85	10.1				70 - 130	30	
1,2,4-Trimethylbenzene	ND	0.50	94	86	8.9				70 - 130	30	
1,2-Dichlorobenzene	ND	0.50	98	90	8.5				70 - 130	30	
1,2-Dichloroethane	ND	0.50	105	97	7.9				70 - 130	30	
1,2-Dichloropropane	ND	0.50	101	91	10.4				70 - 130	30	
1,3,5-Trimethylbenzene	ND	0.50	94	85	10.1				70 - 130	30	
1,3-Dichlorobenzene	ND	0.50	96	86	11.0				70 - 130	30	
1,3-Dichloropropane	ND	0.50	97	89	8.6				70 - 130	30	
1,4-Dichlorobenzene	ND	0.50	93	85	9.0				70 - 130	30	
2,2-Dichloropropane	ND	0.50	96	100	4.1				70 - 130	30	
2-Chlorotoluene	ND	0.50	96	83	14.5				70 - 130	30	
4-Chlorotoluene	ND	0.50	94	87	7.7				70 - 130	30	
Benzene	ND	0.50	99	88	11.8				70 - 130	30	
Bromobenzene	ND	0.50	95	88	7.7				70 - 130	30	
Bromochloromethane	ND	0.50	100	88	12.8				70 - 130	30	
Bromodichloromethane	ND	0.50	100	93	10.2				70 - 130	30	
Bromoform	ND	0.50	105	91	14.3				70 - 130	30	
Bromomethane	ND	0.50	103	89	14.5				70 - 130	30 30	
Carbon tetrachloride	ND	0.50	99	91	8.4				70 - 130	30 30	
Chlorobenzene	ND	0.50	99 92	83	10.3				70 - 130	30 30	
Chloroethane	ND	0.50	101	92	9.3				70 - 130	30	
			.01	, 2	7.0				100		

QA/QC Data

				0.10.					2 0		
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Chloroform	ND	0.50		100	93	7.3				70 - 130	30
Chloromethane	ND	0.50		103	93	10.2				70 - 130	30
cis-1,2-Dichloroethene	ND	0.50		94	83	12.4				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40		99	91	8.4				70 - 130	30
Dibromochloromethane	ND	0.50		125	94	28.3				70 - 130	30
Dibromomethane	ND	0.50		93	88	5.5				70 - 130	30
Dichlorodifluoromethane	ND	0.50		116	99	15.8				70 - 130	30
Ethylbenzene	ND	0.50		94	85	10.1				70 - 130	30
Hexachlorobutadiene	ND	0.40		97	91	6.4				70 - 130	30
Isopropylbenzene	ND	0.50		95	83	13.5				70 - 130	30
m&p-Xylene	ND	0.50		92	84	9.1				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	0.50		99	91	8.4				70 - 130	30
Methylene chloride	ND	0.50		94	87	7.7				70 - 130	30
Naphthalene	ND	0.50		97	88	9.7				70 - 130	30
n-Butylbenzene	ND	0.50		99	92	7.3				70 - 130	30
n-Propylbenzene	ND	0.50		94	87	7.7				70 - 130	30
o-Xylene	ND	0.50		93	83	11.4				70 - 130	30
p-Isopropyltoluene	ND	0.50		97	89	8.6				70 - 130	30
sec-Butylbenzene	ND	0.50		100	93	7.3				70 - 130	30
Styrene	ND	0.50		97	87	10.9				70 - 130	30
tert-Butylbenzene	ND	0.50		96	86	11.0				70 - 130	30
Tetrachloroethene	ND	0.50		99	94	5.2				70 - 130	30
Toluene	ND	0.50		96	88	8.7				70 - 130	30
trans-1,2-Dichloroethene	ND	0.50		97	91	6.4				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40		97	88	9.7				70 - 130	30
Trichloroethene	ND	0.50		97	90	7.5				70 - 130	30
Trichlorofluoromethane	ND	0.50		101	88	13.8				70 - 130	30
Vinyl chloride	ND	0.50		103	91	12.4				70 - 130	30
% 1,2-dichlorobenzene-d4	88	%		96	93	3.2				70 - 130	30
% Bromofluorobenzene Comment:	90	%		96	93	3.2				70 - 130	30
This batch consists of a blank,	LCS and LC	SD.									
QA/QC Batch 364890A (ug/L	.), QC Sam	ple No: E	3V60897 (BV60751, BV	60752,	BV6075	53)					
Haloacetic Acids - Drinl	king Wate	er									
Bromochloroacetic Acid	ND	1.0		110						70 - 130	20
Dibromoacetic Acid	ND	1.0		99						70 - 130	20
Dichloroacetic Acid	ND	1.0		111						70 - 130	20
Monobromoacetic Acid	ND	1.0		110						70 - 130	20
Monochloroacetic Acid	ND	2.0		112						70 - 130	20
Trichloroacetic Acid	ND	1.0		93						70 - 130	20
% 2,3-DBPA	70	%		95						70 - 130	20
Comment:											
This batch does not include a d	luplicato										
	•			0750 5							
QA/QC Batch 365629 (ug/L),	-		1263 (BV60/51, BV6	U752, E	sv60/53	5)					
Carbamates HPLC - Dr	-										
3-Hydroxycarbofuran	ND	0.50		100	107	6.8	103	107	3.8	70 - 130	20
Aldicarb	ND	0.50		83	84	1.2	87	86	1.2	70 - 130	20
Aldicarb Sulfone	ND	0.80		87	92	5.6	93	97	4.2	70 - 130	20
Aldicarb Sulfoxide	ND	0.50		94	96	2.1	87	89	2.3	70 - 130	20
Carbaryl	ND	0.50		118	120	1.7	112	114	1.8	70 - 130	20
Carbofuran	ND	0.90		89	88	1.1	89	94	5.5	70 - 130	20

QA/QC Data

SDG I.D.: GBV60751

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Methomyl	ND	0.50	84	86	2.4	84	90	6.9	70 - 130	20
Oxamyl	ND	2.0	101	104	2.9	99	102	3.0	70 - 130	20
% BDMC	95	%	97	87	10.9	96	99	3.1	70 - 130	20
QA/QC Batch 365292 (ug/L), Q		le No: BV67708 (BV60751, BV6	0752, E	3V60753	3)					
Glyphosate - Drinking Wa	iter									
Glyphosate	ND	6.0	88	92	4.4	91	93	2.2	70 - 130	20

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. m = This parameter is outside laboratory MS/MSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 11, 2016

Friday, November 11, 2016

Criteria: NY: DWP5

State: NY

Sample Criteria Exceedances Report

Sidle.	INT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV60751	E-COLIQ	Escherichia Coli	NY / NY Part 5, Subpart 5 DW / Microbiological	<1	1	0		/IPN/100 ml
BV60751	FE-DW	Iron	EPA / 40 CFR 141 DW / 143.3 Secondary Goals	0.31	0.01	0.3	0.06	mg/L
BV60751	FE-DW	Iron	NY / NY Part 5, Subpart 5 DW / Inorganics	0.31	0.01	0.3	0.3	mg/L
BV60751	MN-DW	Manganese	EPA / 40 CFR 141 DW / 143.3 Secondary Goals	0.073	0.001	0.05	0.01	mg/L
BV60752	E-COLIQ	Escherichia Coli	NY / NY Part 5, Subpart 5 DW / Microbiological	<1	1	0		/IPN/100 ml:
BV60752	T-COLIQ	Total Coliforms	NY / NY Part 5, Subpart 5 DW / Microbiological	<1	1	0		/IPN/100 ml:
BV60753	E-COLIQ	Escherichia Coli	NY / NY Part 5, Subpart 5 DW / Microbiological	<1	1	0		/IPN/100 ml:
BV60753	FE-DW	Iron	EPA / 40 CFR 141 DW / 143.3 Secondary Goals	0.49	0.01	0.3	0.06	mg/L
BV60753	FE-DW	Iron	NY / NY Part 5, Subpart 5 DW / Inorganics	0.49	0.01	0.3	0.3	mg/L
BV60753	T-COLIQ	Total Coliforms	NY / NY Part 5, Subpart 5 DW / Microbiological	<1	1	0		/IPN/100 ml:
BV60753	TURB-WM6	Turbidity	EPA / 40 CFR 141 DW / 141.63 Biologicals MCLs	9.98	0.20	5	5	NTU

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY Temperature Narration

November 11, 2016

SDG I.D.: GBV60751

The samples in this delivery group were received at 2° C. (Note acceptance criteria is above freezing up to 6° C)

		ã		Ń		IAIN OF	NY/NJ CHAIN OF CUSTODY RECORD	RECORD	Temp Data Dalivana		
	UE/VLX			587	East Micdle Email: info(East Middle Turnpike, P.O. Box Emall: info@phoenixlabs.com	37	0, Manchester, CT 06040 Fax (860) 645-0823	Fax #	414-276-2664	
BRUTTOTT	<i>Environmental Laboratories, Inc.</i>	, Inc.			Clie	t Service	Client Services (860) 645-8726	3726	Email:	Email: W Canavor (hejmy . com	
Customer:			•		Project:		Gur Eden E	Estates	Project P.O.		- Y
Address:	HYDROENVIRONMENTAL SOLUTIONS ONE DEANS BRIDGE ROAD SOMFRS. NEW YORK TUSED	VIMENTAL (<u>S BRIDGE</u> <u>FW YDBK</u>	SOLUTION ROAD		Repo	Report to:	t SA	JW	Phone #:	414-276-2560 914-276-2664	
Sampler's Signature	dient Sample, Information - Identification	- Identifical	tion Date: <u> 0/2</u>	120/16	Analysis Request	sis	2 L			140301 100000 10000 10000 10000 10000 10000 1000000	
<u>Matrix Code:</u> DW=drinking water GW=groundwaier	WW=wastewater S=soil/solid SL=sludge A=air	olid O=oil X≕other									
Phoenix Sample #	Customer Sample Identification	Sample Matrix	Date Samnled	Time Samnled	X				201 20 201 201 201 202 202 202 202 202 2		
191007	TW-3	GW	1012016	1 : 45					See Attach		
(60752	1			11:06							
(c0153	TW-8	-1	-+	2:45							
<u>HC109</u>	1 rp Blenk				*						
	-						·				
	•••										
Relinquished by:	Accepted by			Date:		Time:	Turnaround:		- AN	Data Format	
A MU			٦	10/21	21/16	9:46		Res. Criteria	TAGM 4046 GW	Phoenix Std Report	
								Impact to GW Soil	NY375 Unrestricted	PDF	
		ľ					Cother	Cleanup Criteria	Soli Soli NY375 Residential		
Connents, specia	Exclude Browske and Chlorite	ns: 10,12	. ((* SURCHARGE APPLIES		Soil NY375 Restricted Non-Residential Soil	UN Hazsite EDD NY EZ EDD (ASP)	
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	recieved past hold. Kun	- hola	NY F		per c'llen	Le la	State where	State where samples were collected:	lected: NY	Data Package NJ Reduced Deliv. * NY Enhanced (ASP B) *	

Procentx Environmental Laboratories, Inc. 587 East Middle Turnpike Manchester, CT 06040 (860) 645-1102

CONTAINER ORDER

Company: HydroEnvironmental Solutions One Deans Bridge Rd. Somers, NY

NON Chlorinated System

Project: NY State Full part 5 Contact: William Canavan Date: 10/19/16

Parameter 504 (EDB) 508 (Pest/PCB)	515 (Herbicides) 525 (Semi Volatiles) 524 (Volatiles) 531 (Carbamates)	547 (Glyphosate) 548 (Endothail) 549 (Diquat)	Aspescos Dioxin Total Coliform SPC Badon	Gross Alpha, Gross Beta, Ra226, Ra228, Uranium HAA5 Total Metals* & Hardness Total Cyanide	wet Chemistry*** Alkalinity Propylene Glycol Bromate (OL bottle) Chlorite (OL bottle)
<u>Preservative</u> AS IS AS IS	AS IS K citrate/EDTA HCL C6H7K07	Na2S203 Na2S203 Na2S203	AS IS AS IS THIO AS IS	HNO3 HNO3 HNO3 NAOH	AS IS AS IS AS IS EDA EDA
<u>Container</u> 40ml Vials 32oz Amber	3202 Amber 3202 Amber 40ml Vials 60ml Amber Vials	60ml Amber Vials 8oz Amber 500ml Brown Plastic	3202 Amber 3202 Amber 120ml Sterile 40ml Vials	950ml Plastic 4oz. Amber 500ml Plastic 250ml Plastic	120ml Plastic 120ml Plastic 120ml Plastic 120ml Plastic
Set Sets Total 3 5 3 3				, тама 11 10 10 10 10 10 10 10 10 10 10 10 10	

Also included:

*metals: MG, AS, BA, ČD, CR, HG, SE, AG, CU, FE, MN, NA, SB, BE, NI, TI, CÁ, ZN, PB *** Color, Turbidity, PH, TDS, Chloride, Fluoride, Sulfate, Nitrate, Nitrite, Free Chlorine, Odor 2 AS IS vials with Reagent Water for 504 TRIP BLANK (must be submitted)

GBV 60751

Lori Bailey

From: Sent: To: Subject: Lori Bailey Friday, October 21, 2016 04:37 PM 'William A. Canavan' RE: Samples for Gan Eden Estates

Ok, thank you! Just for future reference Radon has a 4 day holding time, and I have to ship it to Colorado. Asbestos only has a 48 hour holding time. Neither lab is open to receive samples on the weekend.

Have a great weekend.

Lori Bailey

Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Ph: 1-860-645-1102 Fx: 1-860-645-0823 THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, forwarding, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by e-mail or telephone, and delete the original message immediately. Thank you.

From: William A. Canavan [mailto:wcanavan@hesny.com]
Sent: Friday, October 21, 2016 4:27 PM
To: Lori Bailey
Cc: Steven M. Verdibello
Subject: RE: Samples for Gan Eden Estates

Tnx Lori.

We will resample. We will make sure we get on the same page before the next round.

From: Lori Bailey [mailto:lori@phoenixlabs.com]
Sent: Friday, October 21, 2016 4:16 PM
To: William A. Canavan <<u>wcanavan@hesny.com</u>>
Cc: Steven M. Verdibello <<u>sVerdibello@hesny.com</u>>
Subject: Samples for Gan Eden Estates

Hello,

Several samples for a full part 5 were dropped off this morning for the above mentioned project. Unfortunately, the Radon and Asbestos will be past hold by the time it reaches the sub-lab that we use to process these analysis.

These labs will not process these past the holding times, so you will have to resample for those 2 parameters.

The sample id's are as follows:

TW-3 TW-5 TW-8

Please let me know if you have any questions.

Thank you,

Lori Bailey Phoenix Environmental Labs

Wednesday, November 23, 2016

Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

Project ID: GAN EDEN ESTATES Sample ID#s: BV78109 - BV78110

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

November 23, 2016

TW-3

GAN EDEN ESTATES

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		11/07/16	12:00
Location Code:	HES-NY	Received by:	В	11/07/16	16:12
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:					

Laboratory Data

SDG ID: GBV78109 Phoenix ID: BV78109

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Heterotrophic Plate Count	995	10	CFU/ml	10	11/07/16 17:50	CB/RM	SM9215B-04	
Bromate	<1.0	1.0	ug/L		11/10/16	*	E317.0	С
Chlorite	<0.010	0.010	mg/L		11/15/16	*	E300.0	С
Radon	3130 ± 58	11.2	pCi/l		11/08/16	*	7500 Rn B	С
Asbestos in Water								
Asbestos fibers (>0.5u and <10u)	ND	6.40	MFL		11/11/16	*	E600/4-84	С
Asbestos fibers (>10u)	ND	0.768	MFL		11/11/16	*	E600/4-84	С

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level

Comments:

Project ID: Client ID:

Asbestos in Water (E600/4-84) was analyzed by NY certified lab #10851. Radon (7500 Rn B) was analyzed by NY certified lab #11417. Bromate (E317.0), Chlorite (E300.0) were analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director November 23, 2016 Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix ID: BV78110

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis	Report
----------	--------

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

November 23, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		11/05/16	14:30
Location Code:	HES-NY	Received by:	В	11/07/16	16:12
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data	SDG ID:	GBV78109

Project ID: GAN EDEN ESTATES Client ID: POTABLE WELL HOBBY

Parameter	Result	RL/ PQL	DIL	Units	AL MCL MCLO	B Date/Time	Ву	Reference
Tot. Diss. Solids	70	10	1	mg/L	500	11/09/16	KH	SM2540C-97
Iron	4.56	0.01	1	mg/L	0.3	11/08/16	LK	E200.7
*** Iron exceeds Secondary Goa	l 0.3 ***							
Manganese	0.036	0.001	1	mg/L	0.05	11/08/16	LK	E200.7
Total Metal Digestion	Completed					11/11/16	AG	E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

Comments:

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director November 23, 2016 Reviewed and Released by: Bobbi Aloisa, Vice President

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 23, 2016

QA/QC Data

SDG I.D.: GBV78109

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 365904A (mg/L),	QC Sar	nple No	: BV7811	0 (BV78	110)								
ICP Metals - Aqueous													
Iron	BRL	0.01				98.5			NC			85 - 115	20
Manganese	BRL	0.001				98.5			103			85 - 115	20
Comment:													
This batch does not include a dup	licate.												

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

QA/QC Report

November 23, 2016

QA/QC Data

SDG I.D.: GBV78109

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 366133 (mg/L), C	C Sam	ole No:	BV77054	(BV781	10)									
Tot. Diss. Solids	BRL	10	240	240	0	97.0						85 - 115	20	
Comment:														

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 23, 2016

Criteria:		3, 2016	Sample Criteria Exceedances Rep GBV78109 - HES-NY	ort				
State: SampNo	NY Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
BV78110	FE-DW	Iron	EPA / 40 CFR 141 DW / 143.3 Secondary Goals	4.56	0.01	0.3	0.06	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY Temperature Narration

November 23, 2016

SDG I.D.: GBV78109

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

Cooler: Yes A No	Temp C C Pg of Contact Ontions:	X Fax: (914) 276-2664 X Phone: (914) 276-2560		Project P.O:	This section MUST be completed with Bottle Quantities.			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						MY Data Format NY 375 GWP Data Format NY 375 Unrestricted Data Format NY 375 Residential Data NY 375 Residential Data Commercial NY EZ EDD Industrial Other Data Package NY Enhanced (ASP B) *
	NY/NJ CHAIN OF CUSTODY RECORD	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@ohoenixlabs.com	60) 645-8726	Project: Conch Edry ESteries	Report to:	() () () () () () () () () ()	a contraction of the second							Time: Turnaround: Nu 2 1 Day* Res. Criteria 2 2 Days* Non-Res. Criteria 2 3 Days* Non-Res. Criteria 2 10 Days Impact to GW Soil 2 10 Days Cleanup Criteria 2 0 Uter Cleanup Criteria 2 0 Other GW Criteria
			Environmental Laboratories, Inc.	Customer: HydroEnvironmental Solutions, Inc.	Address: One Deans Bridge Road Somers, New York, 10589	Cliept-Sample - JutorMation - Identification	ide: img Water GW=Ground Water SW=Surface Water V Water SE=Sediment SL=Sludge S=Soil SD=Soild B=Bulk L=Liquid	PHOENIX USE ONLY Customer Sample Sample Date Time cunton to Matrix Sampled Sampled	7 TU-3 QW 11/#1/6	78110 Brach well - Hobby DW 11/5/16 14:30				Relinquished by: Comments of Regulations:

Eastern Analytical Services, Inc.

Water Sample Report

11/07/2016 Date Collected: Collected By: Not Given Date Received: 11/08/2016 11/11/2016 Date Analyzed: Analyzed By: Ghayath Elias SH-Signature: Analyte: Asbestos Fibers Analytical Method: EPA 100.1/100.2 NVLAP Lab No: 101646-0 NYS Lab Number: 10851

Client: Phoenix Environmental Laboratories, Inc. P.O. Box 370 Manchester, CT 06040

Page 1 of 4

Sample ID# / Lab ID#	Sample Location	Sample Notes	Vol. (mls)	Concentration - 19k ≥0.5 µm < 10.0 µm		Concentration - 10kX ≥10.0 µm
BV78109 2464714	Not Given	Drinking Water	5.	BDL< 6.40E+00 MFL	5.	BDL< 7.68E-01 MFL

Eastern Analytical Services, Inc.

Date Received: **Analytical Method:** Filter Type: 0.10µ MCE 11/08/2016 EPA 100.1/100.2 Date Collected: 11/07/2016 **Instrument:** JEOL 100CXII Filter Manufacturer: Advantec 41002200 Date Analyzed: 11/11/2016 Filter Lot No: Accelerating Voltage: 100 kV Analyzed By: Ghayath Elias Magnification: 19 kX Effective Filtration Area: 960 mm² **Client:** Phoenix Environmental No of Grid Openings: 3 Filter Loading: Medium Sample No: BV78109 Grid Opening Area: 0.010 mm² Volume: 5. milliliters Lab No: 2464714 0.030 mm² Minimum Detection Limit 6.40E+00 MFL Area Analyzed: Grid Length Width SAED Negative ID Structure No. Structure Type No. of EDS Spectra File Name Opening Fibers 1D6 0 No Structure 1P2 0 No Structure 1I3 0 No Structure Total Number of Asbestos Total Number of Asbestos 0 Structures ≥10.0 µm: 0 Structures ≥ 0.5µm < 10.0 µm: Associated Associated BDL< 6.40E+00 MF BDL<7.68E-01 MFL Concentration: **Concentration:**

Page 3 of 4

Eastern Analytical Services, Inc. Water Sample Report

Date Recei	ived:	11/0	08/2016	Ana	lytical I	Method:	EPA 100.1/100.2	2	Filter Typ	e:	0.µ MCE
Date Colle	cted:	11/0	07/2016	Inst	rument	:	JEOL 100CXII		Filter Maı	nufacturer:	Advantec
Date Analy	yzed:	11/	11/2016	Accelerating Voltage: Magnification:			100 kV		Filter Lot	41002200	
Analyzed l	By:	Gha	ayath Elias				10 kX		Effective I	960 mm²	
Client:		Pho	enix Environme	ntal No o	of Grid	Openings:	25		Filter Loa	ding:	Medium
Sample No):	BV	78109	Grie	l Openi	ng Area:	0.010 mm ²		Volume:		5. milliliters
Lab No:		246	64714	Are	a Analy	zed:	0.250 mm ²		Minimum	Detection Limit	it 7.68E-01 MFL
Grid Opening	Structure	e No.	Structure Type	No. of Fibers	Length	Width	SAED	Ne	gative ID	EDS	Spectra File Name
2K1	0		No Structure								
2F6	0		No Structure								
2E8	0		No Structure								
2J3	0		No Structure								
2D7	0		No Structure								
2D8	0		No Structure								
2I2	0		No Structure								
2I3	0		No Structure								
2D3	0		No Structure								
2E1	0		No Structure								
2A8	0		No Structure								
2B6	0		No Structure								
3I3	0		No Structure								
315	0		No Structure								
3J4	0		No Structure								
3J1	0		No Structure								
3P8	0		No Structure								
3Q6	0		No Structure								
3V3	0		No Structure								
3X1	0		No Structure								
3K2	0		No Structure								
3K3	0		No Structure								

Eastern Analytical Services, Inc.

Page 4 of 4

Water Sample Report

Total Number of Asbestos Structures ≥ 0.5μm < 10.0 μm:	Total Number of Asbestos Structures ≥10.0 μm:	0
Associated Concentration:	Associated Concentration:	BDL< 7.68E-01 MFL

Thursday, December 01, 2016

Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

Project ID: GAN EDEN ESTATES Sample ID#s: BV75660 - BV75663

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

December 01, 2016

SDG I.D.: GBV75660

Sample BV75660 was analyzed past hold time for Heterotrophic Plate Count (SM9215B).

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

December 01, 2016

Sample Information

Matrix:	DRINKING WATER
Location Code:	HES-NY
Rush Request:	72 Hour
P.O.#:	

Custody Inform	ation
Collected by:	
Received by:	DL
Analyzed by:	see '

DL see "By" below
 Date
 Time

 11/03/16
 12:00

 11/03/16
 19:27

Laboratory Data

SDG ID: GBV75660 Phoenix ID: BV75660

Project ID:	GAN EDEN ESTATES
Client ID:	TW-6

Parameter	Result	RL/ PQL	DIL	Units	ΔI	MCI	MCLG	Date/Time	By	Reference	
	Absent	0	1	/100 mls		0	MOLO			SM9223B-04	
Escherichia Coli	Absent 1		1	CFU/ml		0		11/03/16 19:50		SM9223B-04 SM9215B-04	
Heterotrophic Plate Count		0				•		11/03/16 20:25			
Total Coliforms	Absent	0	1	/100 mls		0		11/03/16 19:50	CB/CB	SM9223B-04	
Hardness (CaCO3)	< 0.1	0.1	1	mg/L				11/06/16		E200.7	
Alkalinity-CaCO3	55	20.0	1	mg/L				11/04/16		SM2320B-97	
Chloride	13.4	3.0	1	mg/L			250	11/04/16		E300.0	
Color, Apparent	< 1	1	1	Color Units	;		15	11/03/16 19:54	0	SM2120B-01	
Cyanide, Free	< 0.005	0.005	1	mg/L		0.2		11/04/16	EG	E335.4/SW9014	
Fluoride	< 0.10	0.10	1	mg/L		4		11/04/16	BS/EG	E300.0	
Langelier Index	-4.76		1	pH units				11/07/16	DL	SM2330B-05	1
Nitrite as Nitrogen	< 0.004	0.004	1	mg/L		1		11/04/16 07:49	BS/EG	E300.0	
Nitrate as Nitrogen	0.18	0.05	1	mg/L		10		11/04/16 07:49	BS/EG	E300.0	
Odor at 60 Degrees C	< 1.00	1.00	1	T.O.N.			3	11/03/16 20:58	DH/TB	SM2150B-97	
рН	7.34	0.10	1	pH Units			6.5-8.5	11/04/16 05:39	RR/EG	SM4500-H B-00	1
Sulfate	5.9	3.0	1	mg/L			250	11/04/16	BS/EG	E300.0	
Total Cyanide (Drinking water)	< 0.005	0.005	1	mg/L		0.2		11/07/16	EG	E335.4	
Tot. Diss. Solids	59	10	1	mg/L			500	11/07/16	KH	SM2540C-97	
Turbidity	1.03	0.200	1	NTU			5	11/04/16 05:39	RR/EG	SM2130B-01	
Silver	< 0.001	0.001	1	mg/L			0.1	11/05/16	LK	E200.7	
Arsenic	< 0.0005	0.0005	1	mg/L		0.01		11/08/16	RS	E200.9/SM3113B-10	
Barium	< 0.001	0.001	1	mg/L		2		11/05/16	LK	E200.7	
Beryllium	< 0.0003	0.0003	1	mg/L		0.004		11/05/16	LK	E200.7	
Calcium	0.008	0.005	1	mg/L				11/05/16	LK	E200.7	
Cadmium	< 0.001	0.001	1	mg/L		0.005		11/05/16	LK	E200.7	
Chromium	< 0.001	0.001	1	mg/L		0.1		11/05/16	LK	E200.7	
Copper	< 0.002	0.002	1	mg/L	1.3			11/05/16	LK	E200.7	
Iron	< 0.01	0.01	1	mg/L	-		0.3	11/05/16	LK	E200.7	
Mercury	< 0.0002	0.0002	1	mg/L		0.002		11/07/16	RS	E245.1	

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	Ву	Reference	
Magnesium	< 0.005	0.005	1	mg/L				11/05/16	LK	E200.7	
Manganese	< 0.001	0.001	1	mg/L			0.05	11/05/16	LK	E200.7	
Sodium	< 0.1	0.1	1	mg/L				11/05/16	LK	E200.7	
Nickel	< 0.001	0.001	1	mg/L				11/05/16	LK	E200.7	
Lead	< 0.0010	0.0010	1	mg/L	0.015			11/05/16	LK	E200.5	
Antimony	< 0.0008	0.0008	1	mg/L		0.006		11/07/16	RS	E200.9/SM3113B-10	
Selenium	0.001	0.001	1	mg/L		0.05		11/08/16	RS	E200.9/SM3113B-10	
Thallium	< 0.0007	0.0007	1	mg/L		0.002		11/07/16	RS	E200.9/SM3113B-10	
Zinc	< 0.001	0.001	1	mg/L			5	11/05/16	LK	E200.7	
Extraction for 525.3	Completed							11/08/16	E/E	E525.3	
Extraction for Diquat	Completed							11/07/16	E/E	E549	
Extraction for Haloacetic Acids	Completed							11/11/16	D/K	E552.2	
Mercury DW Digestion	Completed							11/07/16	W/W	E245.1	
Extraction of DW PCB	Completed							11/04/16	1/1	E508	
Extraction of DW Herbicides	Completed							11/08/16	D/D	E515	
Total Metal Digestion	Completed							11/04/16	AG/RT/BI		
Total Metal Digestion	Completed							11/04/16		E200.5/E200.7	
EDB and DBCP Analysi	S										
1,2-Dibromo-3-Chloropropane (DBCP)	ND	0.02	1	ug/L		0.2		11/08/16	JRB	E504.1	
1,2-Dibromoethane (EDB)	ND	0.02	1	ug/L		0.02		11/08/16		E504.1	
PCB Screen											
	ND	0.080	1	ug/l		0.5		11/04/16	AW	E508	1
PCB-1016 (screen)			1	ug/l							1
PCB-1221 (screen)	ND	0.10	1	ug/l		0.5		11/04/16	AW	E508	
PCB-1232 (screen)	ND	0.10	1	ug/l		0.5		11/04/16	AW	E508	1
PCB-1242 (screen)	ND	0.10	1	ug/l		0.5		11/04/16	AW	E508	1
PCB-1248 (screen)	ND	0.10	1	ug/l		0.5		11/04/16	AW	E508	1
PCB-1254 (screen)	ND	0.10	1	ug/l		0.5		11/04/16	AW	E508	1
PCB-1260 (screen)	ND	0.10	1	ug/l		0.5		11/04/16	AW	E508	1
PCB-1262 (screen)	ND	0.10	1	ug/l				11/04/16	AW	E508	1
PCB-1268 (screen)	ND	0.10	1	ug/l				11/04/16	AW	E508	1
<u>QA/QC Surrogates</u> %DCBP (Surrogate Rec)	108		1	%	NA	NA	NA	11/04/16	AW	30 - 150 %	
	100		I	/0	INA	INA	IN/A	11/04/10	Avv	30 - 130 %	
Herbicides		0.50	1	ug/l				11/10/16	CE.	EE1E 2	1
2,4,5-T	ND	0.50	1	ug/L		50		11/18/16	CE	E515.3	
2,4,5-TP	ND	0.20	1	ug/L		50		11/18/16	CE	E515.3	
2,4-D	ND	0.10	1	ug/L		70		11/18/16	CE	E515.3	
Dalapon	ND	1.0	1	ug/L		200		11/18/16	CE	E515.3	
Dicamba	ND	0.50	1	ug/L				11/18/16	CE	E515.3	
Dichloroprop	ND	0.50	1	ug/L				11/18/16	CE	E515.3	1
Dinoseb	ND	0.20	1	ug/L		7		11/18/16	CE	E515.3	
Pentachlorophenol	ND	0.040	1	ug/L		1		11/18/16	CE	E515.3	
Picloram	ND	0.10	1	ug/L		500		11/18/16	CE	E515.3	
QA/QC Surrogates			_								
% DCAA	80		1	%	NA	NA	NA	11/18/16	CE	70 - 130 %	
<u>Volatiles</u>											
1,1,1,2-Tetrachloroethane	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2	

Client ID: TW-6

Cheffeld. 199-0		RL/						
Parameter	Result	PQL	DIL	Units	AL MC	_ MCLG Date/Time	Ву	Reference
1,1,1-Trichloroethane	ND	0.50	1	ug/L	5	11/04/16	ΗМ	E524.2
1,1,2,2-Tetrachloroethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
1,1,2-Trichloroethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
1,1-Dichloroethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
1,1-Dichloroethene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
1,1-Dichloropropene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2,3-Trichlorobenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2,3-Trichloropropane	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2,4-Trichlorobenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2,4-Trimethylbenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2-Dichlorobenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2-Dichloroethane	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,2-Dichloropropane	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,3,5-Trimethylbenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,3-Dichlorobenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,3-Dichloropropane	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
1,4-Dichlorobenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
2,2-Dichloropropane	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
2-Chlorotoluene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
4-Chlorotoluene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
Benzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
Bromobenzene	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
Bromochloromethane	ND	0.50	1	ug/L	5	11/04/16	НМ	E524.2
Bromodichloromethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Bromoform	ND	0.50	1	ug/L		11/04/16	HM	E524.2
Bromomethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Carbon tetrachloride	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Chlorobenzene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2 E524.2
Chloroethane	ND	0.50	1	-	5	11/04/16	HM	E524.2
				ug/L	5		HM	E524.2 E524.2
Chloroform	ND	0.50	1	ug/L	F	11/04/16	HM	E524.2 E524.2
Chloromethane	ND	0.50	1	ug/L	5	11/04/16		
cis-1,2-Dichloroethene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
cis-1,3-Dichloropropene	ND	0.40	1	ug/L	5	11/04/16	HM	E524.2
Dibromochloromethane	ND	0.50	1	ug/L	_	11/04/16	HM	E524.2
Dibromomethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Dichlorodifluoromethane	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Ethylbenzene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Hexachlorobutadiene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Isopropylbenzene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
m&p-Xylene	ND	0.50	1	ug/L		11/04/16	HM	E524.2
Methyl t-butyl ether (MTBE)	ND	0.50	1	ug/L	10	11/04/16	HM	E524.2
Methylene chloride	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Naphthalene	ND	0.50	1	ug/L		11/04/16	HM	E524.2
n-Butylbenzene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
n-Propylbenzene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
o-Xylene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
p-Isopropyltoluene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
sec-Butylbenzene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2
Styrene	ND	0.50	1	ug/L	5	11/04/16	HM	E524.2

Client ID: TW-6

Parameter	Result	RL/ PQL	DIL	Units	AL	MCL	MCLG	Date/Time	Ву	Reference
tert-Butylbenzene	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2
Tetrachloroethene	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2
Toluene	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2
Total Trihalomethanes	ND	0.50	1	ug/L		80		11/04/16	HM	E524.2
Total Xylenes	ND	0.50	1	ug/L		10000		11/04/16	HM	E524.2
rans-1,2-Dichloroethene	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2
rans-1,3-Dichloropropene	ND	0.40	1	ug/L		5		11/04/16	HM	E524.2
richloroethene	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2
richlorofluoromethane	ND	0.50	1	ug/L		5		11/04/16	HM	E524.2
/inyl chloride	ND	0.50	1	ug/L		2		11/04/16	HM	E524.2
QA/QC Surrogates										
% 1,2-dichlorobenzene-d4	89		1	%	NA	NA	NA	11/04/16	HM	70 - 130 %
6 Bromofluorobenzene	86		1	%	NA	NA	NA	11/04/16	HM	70 - 130 %
Semivolatile Organic										
Benzo(a)pyrene	ND	0.02	1	ug/L		0.2		11/10/16	MH	E525.3
Bis(2-ethylhexyl)adipate	ND	0.60	1	ug/L		400		11/10/16	MH	E525.3
Bis(2-ethylhexyl)phthalate	ND	0.60	1	ug/L		6		11/10/16	MH	E525.3
Organophosphorus Pe	<u>esticides</u>									
Alachlor	ND	0.05	1	ug/L		2		11/10/16	MH	E525.3
Atrazine	ND	0.05	1	ug/L		3		11/10/16	MH	E525.3
Butachlor	ND	0.05	1	ug/L				11/10/16	MH	E525.3
Netolachlor	ND	0.05	1	ug/L				11/10/16	MH	E525.3
<i>l</i> etribuzin	ND	0.05	1	ug/L				11/10/16	MH	E525.3
Simazine	ND	0.05	1	ug/L		4		11/10/16	MH	E525.3
Pesticides										
Aldrin	ND	0.05	1	ug/L				11/10/16	MH	E525.3
Chlordane	ND	0.20	1	ug/L		2		11/10/16	MH	E525.3
Dieldrin	ND	0.03	1	ug/L				11/10/16	MH	E525.3
Endrin	ND	0.01	1	ug/L		2		11/10/16	MH	E525.3
leptachlor	ND	0.04	1	ug/L		0.4		11/10/16	MH	E525.3
leptachlor Epoxide	ND	0.02	1	ug/L		0.2		11/10/16	MH	E525.3
lexachlorobenzene	ND	0.05	1	ug/L		1		11/10/16	MH	E525.3
lexachlorocyclopentadiene	ND	0.05	1	ug/L		50		11/10/16	MH	E525.3
indane	ND	0.02	1	ug/L		0.2		11/10/16	MH	E525.3
<i>l</i> ethoxychlor	ND	0.05	1	ug/L		40		11/10/16	MH	E525.3
Propachlor	ND	0.05	1	ug/L				11/10/16	МН	E525.3
QA/QC Surrogates				U						
6 1,3-Dimethyl-2-nitrobenzene	101		1	%	NA	NA	NA	11/10/16	МН	70 - 130 %
6 benzo(a)pyrene-d12	97		1	%	NA	NA	NA	11/10/16	MH	70 - 130 %
6 Triphenylphosphate	106		1	%	NA	NA	NA	11/10/16	MH	70 - 130 %
Carbamates HPLC										
B-Hydroxycarbofuran	ND	0.50	1	ug/L				11/15/16	RM	E531.2
Aldicarb	ND	0.50	1	ug/L		3		11/15/16	RM	E531.2
Aldicarb Sulfone	ND	0.80	1	ug/L		2		11/15/16	RM	E531.2
	ND	0.80	1	ug/L		4		11/15/16	RM	E531.2 E531.2
Aldicarb Sulfoxide				-		+				
Carbaryl	ND	0.50	1	ug/L				11/15/16	RM	E531.2

		RL/								
Parameter	Result	PQL	DIL	Units	AL	MCL	MCLG Date/Time	By	Reference	
Carbofuran	ND	0.90	1	ug/L		40	11/15/16	RM	E531.2	
Methomyl	ND	0.50	1	ug/L			11/15/16	RM	E531.2	
Oxamyl	ND	2.0	1	ug/L		200	11/15/16	RM	E531.2	
QA/QC Surrogates										
% BDMC	88		1	%	NA	NA	NA 11/15/16	RM	70 - 130 %	
<u>Diquat</u>										
Diquat	ND	0.40	1	ug/L		20	11/08/16	RM	E549	
Haloacetic Acids										
Bromochloroacetic Acid	ND	1.0	1	ug/L			11/16/16	PS	E552.2	
Dibromoacetic Acid	ND	1.0	1	ug/L		60	11/16/16	PS	E552.2	
Dichloroacetic Acid	ND	1.0	1	ug/L		60	11/16/16	PS	E552.2	
Monobromoacetic Acid	ND	1.0	1	ug/L		60	11/16/16	PS	E552.2	
Monochloroacetic Acid	ND	2.0	1	ug/L		60	11/16/16	PS	E552.2	
Total Haloacetic Acids	ND	1.0	1	ug/L			11/16/16	PS	E552.2	1
Trichloroacetic Acid	ND	1.0	1	ug/L		60	11/16/16	PS	E552.2	
QA/QC Surrogates										
% 2,3-DBPA	83		1	%	NA	NA	NA 11/16/16	PS	70 - 130 %	
Glyphosate	ND	6.0	1	ug/L		700	11/11/16	RM	E547	
Propylene Glycol	ND	7.0	1	mg/L			11/04/16	JRB	SW8015D MOD/1671	1
Endothall										
Endothall	<9.0	9.0		ug/L		100	11/10/16	*	E548.1	С
Asbestos in Water										
Asbestos fibers (>0.5u and <10u)	ND	1.92		MFL			11/09/16	*	E600/4-84	С
Asbestos fibers (>10u)	ND	0.240		MFL			11/09/16	*	E600/4-84	С
Bromate	<1.0	1.0		ug/L		10	11/10/16	*	E317.0	С
Chlorite	<0.010	0.010		mg/L		1	11/10/16	*	E300.0	С
2,3,7,8-TCDD	ND	5.00		pg/L			11/17/16	*	E1613B	С
Gross Alpha Water	ND ± 1.2	3		pci/L		15	11/14/16	*	E900.0	С
Gross Beta Water	ND ± 2.22	4		pci/L			11/14/16	*	E900.0	С
Radium 226	ND ± 0.11	1		pci/L		5	11/25/16	*	7500 Ra B/903.0	С
Radium 228	0.993 ± 0.52	1		pci/L		5	11/23/16	*	7500 Ra D/904.0	С
Radon	818 ± 44	21		pCi/l			11/07/16	*	7500 Rn B	С

Project ID: GAN EDEN ESTATES Phoenix I.D.: BV75660 Client ID: TW-6 RL/ Parameter Result PQL DIL Units AL MCL MCLG Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Asbestos in Water (E600/4-84) was analyzed by NY certified lab #10851.

Radon (7500 Rn B) was analyzed by NY certified lab #11417.

2,3,7,8-TCDD (E1613B) was analyzed by NY certified lab #11647.

Gross Alpha Water (E900.0), Gross Beta Water (E900.0), Radium 226 (7500 Ra B/903.0), Radium 228 (7500 Ra D/904.0) were analyzed by NY certified lab #11777.

Bromate (E317.0), Chlorite (E300.0), Endothall (E548.1) were analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director December 01, 2016 Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

December 01, 2016

Sample Informa	ation	Custody Inforn	nation	Date	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		11/03/16	13:00
Location Code:	HES-NY	Received by:	DL	11/03/16	19:27
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data	SDG ID:	GBV7566

Project ID:	GAN EDEN ESTATES
Client ID:	TW-8

SDG ID: GBV75660 Phoenix ID: BV75661

Parameter	Result	RL/ PQL	DIL	Units	AL MCL	MCLG Date/Time	By	Reference	
Heterotrophic Plate Count	289	0	1	CFU/ml		11/03/16 20:25	CB/RN	1 SM9215B-04	
Asbestos in Water									
Asbestos fibers (>0.5u and <10u)	ND	1.92		MFL		11/09/16	*	E600/4-84	С
Asbestos fibers (>10u)	ND	0.226		MFL		11/09/16	*	E600/4-84	С
Bromate	<1.0	1.0		ug/L	10	11/10/16	*	E317.0	С
Chlorite	<0.010	0.010		mg/L	1	11/10/16	*	E300.0	С
Radon	1040 ± 49	21		pCi/l		11/07/16	*	7500 Rn B	С

Project ID: GAN EDEN ES	TATES			Pł	noenix I.D.: BV75661	
Client ID: TW-8						
		RL/				
Parameter	Result	PQL	DIL	Units	AL MCL MCLG Date/Time	By Reference

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

Comments:

=

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

Asbestos in Water (E600/4-84) was analyzed by NY certified lab #10851. Radon (7500 Rn B) was analyzed by NY certified lab #11417. Bromate (E317.0), Chlorite (E300.0) were analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Shiller, Laboratory Director December 01, 2016 Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

December 01, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		11/03/16	13:30
Location Code:	HES-NY	Received by:	DL	11/03/16	19:27
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data	SDG ID:	GBV7566

Project ID:	GAN EDEN ESTATES
Client ID:	TW-5

SDG ID: GBV75660 Phoenix ID: BV75662

Parameter	Result	RL/ PQL	DIL	Units	AL MCL MCL	_G Date/Time	By	Reference	
Heterotrophic Plate Count	428	0	1	CFU/ml		11/03/16 20:25	CB/RM	1 SM9215B-04	
Asbestos in Water									
Asbestos fibers (>0.5u and <10u)	ND	1.92		MFL		11/09/16	*	E600/4-84	С
Asbestos fibers (>10u)	ND	0.240		MFL		11/09/16	*	E600/4-84	С
Bromate	<1.0	1.0		ug/L	10	11/10/16	*	E317.0	С
Chlorite	<0.010	0.010		mg/L	1	11/10/16	*	E300.0	С
Radon	2770 ± 75	21		pCi/l		11/07/16	*	7500 Rn B	С

Project ID: GAN EDEN ESTATES					Phoenix I.D.: BV7566	62
Client ID: TW-5						
		RL/				
Parameter	Result	PQL	DIL	Units	AL MCL MCLG Date/Time By Reference	

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

Comments:

=

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

Asbestos in Water (E600/4-84) was analyzed by NY certified lab #10851. Radon (7500 Rn B) was analyzed by NY certified lab #11417. Bromate (E317.0), Chlorite (E300.0) were analyzed by NY certified lab #11398.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Shiller, Laboratory Director December 01, 2016 Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. William Canavan HydroEnvironmental Solutions, Inc. One Deans Bridge Rd Somers NY 10589

December 01, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		11/03/16	
Location Code:	HES-NY	Received by:	DL	11/03/16	19:27
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:			Data		

Laboratory Data

SDG ID: GBV75660 Phoenix ID: BV75663

Project ID: GAN EDEN ESTATES Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	DIL	Units	AL MOL	MCLG Date/Time	By	Reference	
		ΓQL		Onits	AL MOL		-	Reference	_
Volatile Library Search	Completed					11/04/16	HM		1
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	0.50	1	ug/L	5	11/03/16	НМ	E524.2	
1,1,1-Trichloroethane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,1,2,2-Tetrachloroethane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,1,2-Trichloroethane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,1-Dichloroethane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,1-Dichloroethene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,1-Dichloropropene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2,3-Trichlorobenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2,3-Trichloropropane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2,4-Trichlorobenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2,4-Trimethylbenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2-Dichlorobenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2-Dichloroethane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,2-Dichloropropane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,3,5-Trimethylbenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,3-Dichlorobenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,3-Dichloropropane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
1,4-Dichlorobenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
2,2-Dichloropropane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
2-Chlorotoluene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
4-Chlorotoluene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
Benzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
Bromobenzene	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
Bromochloromethane	ND	0.50	1	ug/L	5	11/03/16	HM	E524.2	
Bromodichloromethane	ND	0.50	1	ug/L		11/03/16	HM	E524.2	

		RL/	5					_	
Parameter	Result	PQL	DIL	Units	AL	MCL I	MCLG Date/Time	Ву	Reference
Bromoform	ND	0.50	1	ug/L			11/03/16	HM	E524.2
Bromomethane	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Carbon tetrachloride	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Chlorobenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Chloroethane	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Chloroform	ND	0.50	1	ug/L			11/03/16	HM	E524.2
Chloromethane	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
cis-1,2-Dichloroethene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
cis-1,3-Dichloropropene	ND	0.40	1	ug/L		5	11/03/16	HM	E524.2
Dibromochloromethane	ND	0.50	1	ug/L			11/03/16	HM	E524.2
Dibromomethane	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Dichlorodifluoromethane	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Ethylbenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Hexachlorobutadiene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Isopropylbenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
m&p-Xylene	ND	0.50	1	ug/L			11/03/16	HM	E524.2
Methyl t-butyl ether (MTBE)	ND	0.50	1	ug/L		10	11/03/16	HM	E524.2
Methylene chloride	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Naphthalene	ND	0.50	1	ug/L			11/03/16	HM	E524.2
n-Butylbenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
n-Propylbenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
o-Xylene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
p-Isopropyltoluene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
sec-Butylbenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Styrene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
tert-Butylbenzene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Tetrachloroethene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Toluene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Total Trihalomethanes	ND	0.50	1	ug/L		80	11/03/16	HM	E524.2
Total Xylenes	ND	0.50	1	ug/L		10000	11/03/16	HM	E524.2
trans-1,2-Dichloroethene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
trans-1,3-Dichloropropene	ND	0.40	1	ug/L		5	11/03/16	HM	E524.2
Trichloroethene	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Trichlorofluoromethane	ND	0.50	1	ug/L		5	11/03/16	HM	E524.2
Vinyl chloride	ND	0.50	1	ug/L		2	11/03/16	HM	E524.2
QA/QC Surrogates				-					
% 1,2-dichlorobenzene-d4	87		1	%	NA	NA	NA 11/03/16	НМ	70 - 130 %
% Bromofluorobenzene	85		1	%	NA	NA	NA 11/03/16	HM	70 - 130 %

Project ID: GAN EDEN ES	TATES				P	hoenix	(I.D.: BV75663
Client ID: TRIP BLANK							
		RL/					
Parameter	Result	PQL	DIL	Units	AL MCL MCLG Date/Time	By	Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) AL = Action Level MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Maximum Contaminant Level (MCL) (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Action Level (AL): (Lower of): 40 CFR Part 141.80; Public Health Law, Section 225 Part 5.

Secondary DW Maximum Contaminant Level Goal (MCLG): (Lower of): 40 CFR Part 141; 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director December 01, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

	1E			CLIEN	ΓID
	ATILE ORGANICS AN ENTATIVELY IDENTIF			TRIP BL	ANK
Lab Name: Phoenix En	vironmental Labs	Cli	ent: HES-NY	_	
Lab Code: Phoenix	Case No.:	SAS I	No.:	SDG No.:	GBV75660
Matrix:(soil/water)	WATER		Lab Sample ID:	BV75663	
Sample wt/vol:	5(g/mL) <u>mL</u>	Lab File ID:	1103B29.D	
Level: (low/med)			Date Received:	11/03/16	
% Moisture: not dec.	100		Date Analyzed:	11/03/16	
GC Column:	rtx-vms ID:	<u>0.18 (mm)</u>	Dilution Factor:	-	1
Purge Volume	(uL)		Soil Aliquot Vol (u	L):	n.a.
Number TICs found:	0	CONCENTRATION UNIT (ug/L or ug/KG)	ГS: _ug/L	-	
CAS NUMBER	COMPOUNE) NAME	RT	EST. CONC.	Q
					+

FORM I VOA-TIC

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 01, 2016

QA/QC Data

SDG I.D.: GBV75660

Parameter	Blank	Blk	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
						70	70	NI D	70	70	KI D	Linits	LITING
QA/QC Batch 365797 (mg/L), C				-	•								
Mercury	BRL	0.0002	< 0.0002	<0.0002	NC	87.5			86.5			85 - 115	20
QA/QC Batch 365678 (mg/L), C	C Sam	ple No: I	BV72856	(BV7566	60)								
Antimony	BRL	0.002	<0.0008	< 0.002	NC	104			113			85 - 115	20
Arsenic	BRL	0.001	<0.001	<0.001	NC	101			113			85 - 115	20
Selenium	BRL	0.001	<0.001	<0.001	NC	110			119			85 - 115	20
Thallium	BRL	0.001	<0.0007	<0.001	NC	101			102			85 - 115	20
Comment:													
Additional: LCS acceptance range	e is 85-11	15% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 365696A (mg/L),	QC Sar	nple No	: BV7551	2 (BV756	560)								
ICP Metals - Aqueous													
Barium	BRL	0.001				98.2			97.8			85 - 115	20
Beryllium	BRL	0.0003				104			102			85 - 115	20
Cadmium	BRL	0.001				97.2			96.0			85 - 115	20
Calcium	BRL	0.01				106			NC			85 - 115	20
Chromium	BRL	0.001				98.1			97.4			85 - 115	20
Copper	BRL	0.002				105			99.7			85 - 115	20
Iron	BRL	0.01				99.6			97.2			85 - 115	20
Lead	BRL	0.0010				97.5			97.2			85 - 115	20
Magnesium	BRL	0.01				98.9			86.5			85 - 115	20
Manganese	BRL	0.001				99.2			98.7			85 - 115	20
Nickel	BRL	0.001				97.8			96.6			85 - 115	20
Silver	BRL	0.001				101			97.8			85 - 115	20
Sodium	BRL	0.1				103			NC			85 - 115	20
Comment:													
This batch does not include a dup	licate.												

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 01, 2016

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 365628 (mg/L), C)C Sami	No.	BV/75512	(BV756	50)								
Chloride	BRL	3.0	10.7	10.6	NC	96.6			101			90 - 110	20
Fluoride	BRL	0.10	0.69	0.68	1.50	101			97.2			90 - 110	20
Nitrate as Nitrogen	BRL	0.05	0.08	0.09	NC	104			96.6			90 - 110	20
Nitrite as Nitrogen	BRL	0.004	<0.004	<0.004	NC	102			95.2			90 - 110	20
Sulfate	BRL	3.0	3.8	3.7	NC	103			100			90 - 110	20
QA/QC Batch 365830 (mg/L), C	C Sam	ole No:	BV75521	(BV756	50)								
Tot. Diss. Solids Comment:	BRL	10	710	700	1.40	91.0						85 - 115	20
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 365611 (mg/L), C	C Sam	ble No:	BV75660	(BV756	60)								
Alkalinity-CaCO3 Comment:	BRL	5.00	55	53	NC	98.9						85 - 115	20
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 365565 (mg/L), C	C Sam	ble No:	BV75660	(BV756	60)								
Free Cyanide Comment:	BRL	0.01	<0.005	<0.01	NC	98.0			97.5			85 - 115	20
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 365606 (pH), QC	Sample	No: B	/75660 (E	3V75660)								
рН			7.34	7.29	0.70	98.6						85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 365716 (mg/L), C	C Sam	ole No:	BV75660	(BV756	50)								
Total Cyanide (Drinking water)	BRL	0.01	<0.005	<0.01	NC	96.2			95.0			85 - 115	20
QA/QC Batch 365616 (NTU), Q	C Samp	le No: E	3V75660	(BV7566	0)								
Turbidity	BRL	0.200	1.03	0.92	NC	93.5						85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102

QA/QC Report

December 01, 2016

QA/QC Data

Fax (860) 645-0823

SDG I.D.: GBV75660

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 365902 (ug/L), (QC Samp	le No: BV67708 (BV75660)									
Semivolatile Organic Co	•										
Alachlor	ND	0.05	120			118	127	7.3	70 - 130	20	
Aldrin	ND	0.05	120			100	103	3.0	70 - 130	20	
Atrazine	ND	0.05	103			103	103	0.0	70 - 130	20	
Benzo(a)pyrene	ND	0.02	103			110	110	0.0	70 - 130	20	
Bis(2-ethylhexyl)adipate	ND	0.60	107			108	115	6.3	70 - 130	20	
Bis(2-ethylhexyl)phthalate	ND	0.60	108			111	112	0.9	70 - 130	20	
Butachlor	ND	0.05	138			132	153	14.7	70 - 130	20	l.m
Chlordane	ND	0.03	90			88	91	3.4	70 - 130	20	
Dieldrin	ND	0.03	104			102	103	1.0	70 - 130	20	
Endrin	ND	0.01	108			107	115	7.2	70 - 130	20	
Heptachlor	ND	0.04	108			107	119	10.6	70 - 130	20	
Heptachlor Epoxide	ND	0.02	96			94	97	3.1	70 - 130	20	
Hexachlorobenzene	ND	0.05	81			78	83	6.2	60 - 130	20	
Hexachlorocyclopentadiene	ND	0.05	74			79	86	8.5	60 - 130	20	
Lindane	ND	0.02	100			99	99	0.0	70 - 130	20	
Methoxychlor	ND	0.05	121			129	144	11.0	70 - 130	20	m
Metolachlor	ND	0.05	117			114	121	6.0	70 - 130	20	
Metribuzin	ND	0.05	105			108	117	8.0	70 - 130	20	
Propachlor	ND	0.05	112			110	114	3.6	70 - 130	20	
Simazine	ND	0.05	107			104	104	0.0	70 - 130	20	
% 1,3-Dimethyl-2-nitrobenzene	95	%	98			98	98	0.0	70 - 130	20	
% benzo(a)pyrene-d12	90	%	92			96	94	2.1	70 - 130	20	
% Triphenylphosphate	97	%	101			102	102	0.0	70 - 130	20	
Comment:											

Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS.Tap water, collected and dechlorinated in sample containers, was used as the MS and MSD.

QA/QC Batch 365985 (ug/L), QC Sample No: BV68505 (BV75660)

Herbicides - Drinking Water

2,4,5-T	ND	0.50	95	102	70 - 130	20
2,4,5-TP	ND	0.20	90	95	70 - 130	20
2,4-D	ND	0.10	130	130	70 - 130	20
Dalapon	ND	1.0	90	100	70 - 130	20
Dicamba	ND	0.50	90	99	70 - 130	20
Dichloroprop	ND	0.50	97	103	70 - 130	20
Dinoseb	ND	0.20	87	98	70 - 130	20
Pentachlorophenol	ND	0.040	85	91	70 - 130	20
Picloram	ND	0.10	108	112	70 - 130	20
% DCAA (Surrogate Rec)	86	%	80	86	70 - 130	20

<u>QA/QC Data</u>

SDG I.D.: GBV75660

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 365724 (ug/L), Q0	C Samp	le No: BV72669 (BV75660)								
EDB and DBCP Analysis										
1,2-Dibromo-3-Chloropropane (DB	ND	0.02	100	103	3.0	102	97	5.0	70 - 130	20
1,2-Dibromoethane (EDB)	ND	0.02	99	103	1.0	99	85		70 - 130	20
			77	100	1.0	77	05	13.2	70-150	20
QA/QC Batch 365553 (ug/L), Q0		ie No: BV73364 (BV75660)								
Pesticides - Drinking Wate	<u>er</u>									
% DCBP	109	%	104			115			70 - 130	20
QA/QC Batch 365561 (ug/L), Q0	C Samp	le No: BV75443 (BV75660, BV7	5663)							
Volatiles - Drinking Water										
1,1,1,2-Tetrachloroethane	ND	0.50	88	91	3.4				70 - 130	30
1,1,1-Trichloroethane	ND	0.50	88	87	1.1				70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	101	99	2.0				70 - 130	30
1,1,2-Trichloroethane	ND	0.50	85	90	5.7				70 - 130	30
1,1-Dichloroethane	ND	0.50	90	88	2.2				70 - 130	30
1,1-Dichloroethene	ND	0.50	94	91	3.2				70 - 130	30
1,1-Dichloropropene	ND	0.40	91	89	2.2				70 - 130	30
1,2,3-Trichlorobenzene	ND	0.50	89	94	5.5				70 - 130	30
1,2,3-Trichloropropane	ND	0.50	89	90	1.1				70 - 130	30
1,2,4-Trichlorobenzene	ND	0.50	89	89	0.0				70 - 130	30
1,2,4-Trimethylbenzene	ND	0.50	91	91	0.0				70 - 130	30
1,2-Dichlorobenzene	ND	0.50	91	92	1.1				70 - 130	30
1,2-Dichloroethane	ND	0.50	92	90	2.2				70 - 130	30
1,2-Dichloropropane	ND	0.50	89	86	3.4				70 - 130	30
1,3,5-Trimethylbenzene	ND	0.50	92	91	1.1				70 - 130	30
1,3-Dichlorobenzene	ND	0.50	93	90	3.3				70 - 130	30
1,3-Dichloropropane	ND	0.50	89	91	2.2				70 - 130	30
1,4-Dichlorobenzene	ND	0.50	92	91	1.1				70 - 130	30
2,2-Dichloropropane	ND	0.50	92	88	4.4				70 - 130	30
2-Chlorotoluene	ND	0.50	91	89	2.2				70 - 130	30
4-Chlorotoluene	ND	0.50	89	89	0.0				70 - 130	30
Benzene	ND	0.50	91	88	3.4				70 - 130	30
Bromobenzene	ND	0.50	94	94	0.0				70 - 130	30
Bromochloromethane	ND	0.50	91	90	1.1				70 - 130	30
Bromodichloromethane	ND	0.50	85	86	1.2				70 - 130	30
Bromoform	ND	0.50	81	86	6.0				70 - 130	30
Bromomethane	ND	0.50	85	83	2.4				70 - 130	30
Carbon tetrachloride	ND	0.50	93	92	1.1				70 - 130	30
Chlorobenzene	ND	0.50	88	88	0.0				70 - 130	30
Chloroethane	ND	0.50	96	86	11.0				70 - 130	30
Chloroform	ND	0.50	91	90	1.1				70 - 130	30
Chloromethane	ND	0.50	96	90	6.5				70 - 130	30
cis-1,2-Dichloroethene	ND	0.50	89	81	9.4				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	87	84	3.5				70 - 130	30
Dibromochloromethane	ND	0.50	88	91	3.4				70 - 130	30
Dibromomethane	ND	0.50	91	91	0.0				70 - 130	30
Dichlorodifluoromethane	ND	0.50	119	115	3.4				70 - 130	30
Ethylbenzene	ND	0.50	95	94	1.1				70 - 130	30
	ND	0.40	88	91 02	3.4				70 - 130	30
Isopropylbenzene		0.50	94	92 02	2.2				70 - 130	30
m&p-Xylene		0.50	93 00	93 100	0.0				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	0.50	99	100	1.0				70 - 130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Methylene chloride	ND	0.50	89	92	3.3				70 - 130	30	
Naphthalene	ND	0.50	96	97	1.0				70 - 130	30	
n-Butylbenzene	ND	0.50	99	97	2.0				70 - 130	30	
n-Propylbenzene	ND	0.50	91	90	1.1				70 - 130	30	
o-Xylene	ND	0.50	90	93	3.3				70 - 130	30	
p-Isopropyltoluene	ND	0.50	94	91	3.2				70 - 130	30	
sec-Butylbenzene	ND	0.50	101	99	2.0				70 - 130	30	
Styrene	ND	0.50	93	93	0.0				70 - 130	30	
tert-Butylbenzene	ND	0.50	94	93	1.1				70 - 130	30	
Tetrachloroethene	ND	0.50	92	86	6.7				70 - 130	30	
Toluene	ND	0.50	87	85	2.3				70 - 130	30	
trans-1,2-Dichloroethene	ND	0.50	91	89	2.2				70 - 130	30	
trans-1,3-Dichloropropene	ND	0.40	82	82	0.0				70 - 130	30	
Trichloroethene	ND	0.50	91	89	2.2				70 - 130	30	
Trichlorofluoromethane	ND	0.50	99	96	3.1				70 - 130	30	
Vinyl chloride	ND	0.50	102	100	2.0				70 - 130	30	
% 1,2-dichlorobenzene-d4 % Bromofluorobenzene	90 00	%	112	108	3.6				70 - 130	30	
	90	%	103	105	1.9				70 - 130	30	
Comment:											
This batch consists of a blank, LCS											
QA/QC Batch 366600A (ug/L), (2C Sam	ple No: BV75660 (BV75660)									
Haloacetic Acids - Drinkin	g Wat	<u>er</u>									
Bromochloroacetic Acid	ND	1.0	114			107			70 - 130	20	
Dibromoacetic Acid	ND	1.0	111			107			70 - 130	20	
Dichloroacetic Acid	ND	1.0	124			119			70 - 130	20	
Monobromoacetic Acid	ND	1.0	109			102			70 - 130	20	
Monochloroacetic Acid	ND	2.0	102			107			70 - 130	20	
Trichloroacetic Acid	ND	1.0	100			97			70 - 130	20	
% 2,3-DBPA	91	%	104			91			70 - 130	20	
QA/QC Batch 365896 (ug/L), Q0 Diquat - Drinking Water	C Samp	le No: BV75660 (BV75660)									
Diquat	ND	0.40	84			91	87	4.5			
QA/QC Batch 365671 (mg/L), Q	C Sam	ole No: BV75908 (BV75660)									
Glycols - Drinking Water											
Propylene glycol	ND	7.0	131	132	0.8	122	132	7.9	70 - 130	30	l,m
QA/QC Batch 366772 (ug/L), Q											
Glyphosate - Drinking Wa	ter										
Glyphosate	ND	6.0	119	118	0.8	121	117	3.4	70 - 130	20	
QA/QC Batch 366972 (ug/L), Q0	C Samp	le No: BV81491 (BV75660)									
Carbamates HPLC - Drink	king W	ater									
3-Hydroxycarbofuran	ND	0.50	102	105	2.9	113	124	9.3	70 - 130	20	
Aldicarb	ND	0.50	75	82	8.9	90	90	0.0	70 - 130	20	
Aldicarb Sulfone	ND	0.80	86	87	1.2	97	97	0.0	70 - 130	20	
Aldicarb Sulfoxide	ND	0.50	87	95	8.8	106	106	0.0	70 - 130	20	
Carbaryl	ND	0.50	109	113	3.6	130	129	0.8	70 - 130	20	
Carbofuran	ND	0.90	82	89	8.2	98	96	2.1	70 - 130	20	
Methomyl	ND	0.50	78	83	6.2	91	89	2.2	70 - 130	20	
Oxamyl	ND	2.0	94	97	3.1	110	111	0.9	70 - 130	20	
% BDMC	84	%	94	71	27.9	72	103	35.4	70 - 130	20	r

<u>QA/QC Data</u>

									%	%	
		Blk	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. m = This parameter is outside laboratory MS/MSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director December 01, 2016

Thursday, D	December 01, 2010	3	Sample Criteria F	xceedances Report						
Criteria:	NY: DWP5			GBV75660 - HES-NY						
State:	NY		001730				RL	Analvsis		
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units		
*** Ne Dete	to Diamlay ***									

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

December 01, 2016

SDG I.D.: GBV75660

The samples in this delivery group were received at 6° C. (Note acceptance criteria is above freezing up to 6° C)

ntal Solutions, I Bridge Road w York, 10589 A York, 10589 Bate Date Matrix Sample Matrix Sample Matrix Culor	Solutions, I Ber Waste Solid W=Waste Sampled	NY/NJ CHAIN OF CUSTODY RECORD Cooler: Yes No 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Temp 0 ° C Pape 0 ° C Pa of 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Temp 0 ° C Pa 0 ° C Pa of 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Temp 0 ° C Pa 0 ° C Pa of Client Services (860) 645-0823 X Phone: (914) 276-2560 Email: Email:	Project: \mathcal{G}_{ant} \mathcal{E}_{der} \mathcal{E}_{fer} Project P.O:Report to: $4 - S_{enve}$ This section MUST be completed with Bottle Quantities.			Imace Imace Imace Imace Imace Imace Imace Imace Imace Imace<
	HydroEnvironm HydroEnvironm HydroEnvironm One Dean Somers, Ne	STERNA .		rdemthcation 	⇒ Date Sampled S. Date 1/2/10/12	RANTU RANTU Shester

IES, INC. 75/160	•••	Project: NY State Full part 5 Contact: William Canavan Date: 10/19/16	Parameter 504 (EDB) 508 (Pest/PCB) 515 (Herbicides) 525 (Semi Volatiles) 524 (Volatiles) 524 (Volatiles) 524 (Volatiles) 531 (Carbamates) 533 (Carbamates) 549 (Diquat) 549 (Diquat) 540 (D	Plastic AS IS Alkalinity als AS IS Propylene Glycol Plastic EDA Bromate (OL bottle) Plastic EDA Chlorite (OL bottle) for 504 TRIP BLANK (must be submitted) SE, AG, CU, FE, MN, NA, SB, BE, NI, TI, CA, ZN, PB
rnoenix Environmental Laboratories, 1nc. 587 East Middle Turnpike Manchester, CT 06040 (860) 645-1102	CONTAINER ORDER	NON Chlorinated System	Preservative AS IS AS IS AS IS AS IS AS IS HCL Na2S203 Na2S203 Na2S203 AS IS AS IS A	Plastic AS IS Alk Plastic AS IS Alk Plastic EDA Bro Plastic EDA Chl for 504 TRIP BLANK (must be submitted) SE, AG, CU, FE, MN, NA, SB, BE, NI, TI, CA
Procent Envir 587 E Man	00	S	<u>Container</u> 40ml Vials 32oz Amber 32oz Amber 32oz Amber 40ml Vials 60ml Amber Vials 60ml Amber Vials 60ml Amber Vials 80z Amber 500ml Brown Plastic 320z Amber 120ml Sterile 120ml Sterile 40ml Vials 950ml Plastic 250ml Plastic 950ml Plastic	120ml Plastic 40ml Vials 120ml Plastic 120ml Plastic gent Water for 504 TRIP BL 20, CR, HG, SE, AG, CU, FE, I
		HydroEnvironmental Solution One Deans Bridge Rd. Somers, NY	<u>សា OF លេខលាលលាក លាខាត្តា ក្រុមក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្រុមកាលក្</u>	1 3 3 120ml 2 3 6 40ml Vi 1 3 3 120ml Also included: 2 AS IS vials with Reagent Water * metals: MG, AS, BA, CD, CR, HG,
•		Company: Hydi One Som	# C	1 3 3 2 3 6 1 3 3 1 3 3 1 3 3 Also included: 2 AS IS vials w * metals: MG, <i>J</i>

8

*** Color, Turbidity, PH, TDS, Chloride, Fluoride, Sulfate, Nitrate, Nitrite, Free Chlorine, Odor

Eastern Analytical Services, Inc.

Water Sample Report

11/03/2016 Date Collected: Collected By: Not Given 11/04/2016 Date Received: Date Analyzed: 11/09/2016 Analyzed By: Ghayath Elias SH-Signature: Analyte: Asbestos Fibers Analytical Method: EPA 100.1/100.2 NVLAP Lab No: 101646-0 NYS Lab Number: 10851

Client: Phoenix Environmental Laboratories, Inc. P.O. Box 370 Manchester, CT 06040

Sample ID# / Lab ID#	Sample Location	Sample Notes	Vol. (mls)	Concentration - 19k ≥0.5 µm < 10.0 µm		Concentration - 10kX ≥10.0 µm
75660 2463516	Not Given	Drinking Water	50.	BDL< 1.92E+00 MFL	50.	BDL< 2.40E-01 MFL
75661 2463517	Not Given	Drinking Water	25.	BDL< 1.92E+00 MFL	25.	BDL< 2.26E-01 MFL
75662 2463518	Not Given	Drinking Water	50.	BDL< 1.92E+00 MFL	50.	BDL< 2.40E-01 MFL

MFL = Million Fibers per Liter Liability Limited to Cost of Analysis.

Results Applicable to Those Items Tested. Samples received in acceptable condition unless otherwise noted. This Report Must Not be Used by the Client to Claim Product Endorsement by NVLAP or Any Agency of the US Government. AIHA Accreditation No. 418 Rhode Island DOH No. AAL-072T3 Massachusetts DOL No. A A 000072 Connecticut DOH No. PH-0622 Maine DEP No. LA-024 Vermont DOH No. AAS-2095

Page 27 of 34

Page 1 of 7

Eastern Analytical Services, Inc. Water Sample Report

Date Received: **Analytical Method:** Filter Type: 0.10µ MCE 11/04/2016 EPA 100.1/100.2 JEOL 100CXII Date Collected: 11/03/2016 **Instrument:** Filter Manufacturer: Advantec Date Analyzed: 11/09/2016 Filter Lot No: 41002200 Accelerating Voltage: 100 kV Analyzed By: Ghayath Elias Magnification: 19 kX Effective Filtration Area: 960 mm² Filter Loading: **Client:** Phoenix Environmental No of Grid Openings: 1 Light Sample No: 75660 Grid Opening Area: 0.010 mm² Volume: 50. milliliters 2463516 0.010 mm² Minimum Detection Limit 1.92E+00 MFL Lab No: Area Analyzed: Grid Length Width SAED Negative ID Structure No. Structure Type No. of EDS Spectra File Name Opening Fibers 1P8 0 No Structure Total Number of Asbestos Total Number of Asbestos 0 0 Structures ≥ 0.5µm < 10.0 µm: Structures ≥10.0 µm: Associated Associated BDL< 1.92E+00 MF BDL< 2.40E-01 MFL **Concentration: Concentration:**

Eastern Analytical Services, Inc.

Date Rece	ived: 11/	04/2016	Anal	ytical I	Method	l :	EPA 100.1/100.2	2	Filter Typ	e:	0.10µ MCE
Date Colle	ected: 11/	03/2016	Instr	ument	:		JEOL 100CXII		Filter Ma	nufacturer:	Advantec
Date Anal	yzed: 11/	09/2016	Acce	leratin	g Volta	ge:	100 kV		Filter Lot	No:	41002200
Analyzed	By: Gh	ayath Elias	Mag	Magnification:			19 kX		Effective 1	Filtration Area	: 960 mm ²
Client:	Pho	oenix Environme	ntal No o	tal No of Grid Openin		igs:	: 2		Filter Loading:		Medium
Sample No	o: 750	561	Grid Opening Are			a:	0.010 mm ² Volume:				25. milliliters
Lab No:	246	53517	Area	Analy	zed:		0.020 mm ²		Minimum	Detection Lim	it 1.92E+00 MFL
Grid Structure No. Structure Type			No. of Fibers	Length	Width		SAED		gative ID	EDS	Spectra File Name
1P8	0	No Structure									
1N7	0	No Structure									
	er of Asbestos : 0.5µm < 10.0 µr	n: 0					Number of Asbestos tures ≥ 10.0 µm:		0		
Associated Concentration: BDL< 1.			92E+00 MF			Assoc Conce	ciated entration:		BDL< 2.26E	-01 MFL	

Eastern Analytical Services, Inc. Water Sample Report

Date Received: **Analytical Method:** Filter Type: 0.10µ MCE 11/04/2016 EPA 100.1/100.2 Date Collected: 11/03/2016 **Instrument:** JEOL 100CXII Filter Manufacturer: Advantec Date Analyzed: 11/09/2016 Filter Lot No: 41002200 Accelerating Voltage: 100 kV Analyzed By: Ghayath Elias Magnification: 19 kX Effective Filtration Area: 960 mm² **Client:** Phoenix Environmental No of Grid Openings: 1 Filter Loading: Medium Sample No: 75662 Grid Opening Area: 0.010 mm² Volume: 50. milliliters 2463518 Minimum Detection Limit 1.92E+00 MFL Lab No: 0.010 mm² Area Analyzed: Grid Length Width SAED Negative ID Structure No. Structure Type No. of EDS Spectra File Name Opening Fibers 1V1 0 No Structure Total Number of Asbestos Total Number of Asbestos 0 0 Structures ≥ 0.5µm < 10.0 µm: Structures ≥10.0 µm: Associated Associated BDL< 1.92E+00 MF BDL< 2.40E-01 MFL **Concentration: Concentration:**

Eastern Analytical Services, Inc. Water Sample Report

Date Received: Filter Type: 11/04/2016 **Analytical Method:** EPA 100.1/100.2 0.10µ MCE Date Collected: 11/03/2016 **Instrument:** JEOL 100CXII Filter Manufacturer: Advantec Date Analyzed: 11/09/2016 Filter Lot No: 41002200 Accelerating Voltage: 100 kV Analyzed By: Ghayath Elias Magnification: 10 kX Effective Filtration Area: 960 mm² **Client:** Phoenix Environmental No of Grid Openings: 8 Filter Loading: Light Sample No: 75660 **Grid Opening Area:** 0.010 mm² Volume: 50. milliliters 2463516 0.080 mm² Minimum Detection Limit 2.40E-01 MFL Lab No: Area Analyzed: Grid Length Width Structure No. Structure Type No. of SAED Negative ID EDS Spectra File Name Opening Fibers 2R2 0 No Structure 2R1 0 No Structure 2K6 0 No Structure 2K7 0 No Structure 2H3 0 No Structure 2C8 0 No Structure 2D6 0 No Structure Total Number of Asbestos **Total Number of Asbestos** Structures ≥ 0.5µm < 10.0 µm: 0 Structures ≥10.0 µm: 0 Associated Associated BDL< 2.40E-01 MFL **Concentration:** BDL< 1.92E+00 MF **Concentration:**

Page 6 of 7

Eastern Analytical Services, Inc. Water Sample Report

Date Rece	ived: 1	1/04/2016	Anal	lytical I	Method:	:	EPA 100.1/100.2	2	Filter Typ	pe:	0.10µ MCE
Date Colle	ected: 1	1/03/2016	Instr	rument	:		JEOL 100CXII		Filter Ma	nufacturer:	Advantec
Date Anal	yzed: 1	1/09/2016	Acce	leratin	g Voltag	ge:	100 kV		Filter Lot	No:	41002200
Analyzed	By: G	hayath Elias	Mag	nificati	on:		10 kX		Effective	Filtration Area:	960 mm²
Client:	Р	hoenix Environme	ntal Noo	f Grid	Opening	gs:	17		Filter Loading:		Medium
Sample No	o: 7	5661	Grid	l Openi	ng Area	1:	0.010 mm ²		Volume:		25. milliliters
Lab No:	2	463517	Area	Analy	zed:		0.170 mm ²		Minimum	Detection Limi	t 2.26E-01 MFL
Grid Opening	Structure No	o. Structure Type	No. of Fibers	Length	Width		SAED	Ne	gative ID	EDS	Spectra File Name
2P7	0	No Structure									
2P8	0	No Structure									
2V2	0	No Structure									
2V3	0	No Structure									
2J5	0	No Structure									
2J8	0	No Structure									
2K4	0	No Structure									
2K6	0	No Structure									
2H8	0	No Structure									
2N3	0	No Structure									
3D5	0	No Structure									
3D8	0	No Structure									
3E4	0	No Structure									
3E6	0	No Structure									
3P6	0	No Structure									
	er of Asbestos 2 0.5µm < 10.0	μm: 0					Number of Asbestos tures ≥10.0 µm:		0		
Associated Concentratio	on:	BDL<1.	92E+00 MF			Associated Concentration: BDL< 2.26E-01 MFL				E-01 MFL	

Eastern Analytical Services, Inc. Water Sample Report

Date Received: Filter Type: 11/04/2016 **Analytical Method:** EPA 100.1/100.2 0.10µ MCE Date Collected: 11/03/2016 **Instrument:** JEOL 100CXII Filter Manufacturer: Advantec Date Analyzed: 11/09/2016 Filter Lot No: 41002200 Accelerating Voltage: 100 kV Analyzed By: Ghayath Elias Magnification: 19 kX Effective Filtration Area: 960 mm² **Client:** Phoenix Environmental No of Grid Openings: 8 Filter Loading: Medium Sample No: 75662 **Grid Opening Area:** 0.010 mm² Volume: 50. milliliters 2463518 0.080 mm² Minimum Detection Limit 2.40E-01 MFL Lab No: Area Analyzed: Grid Length Width Structure No. Structure Type No. of SAED Negative ID EDS Spectra File Name Opening Fibers 2D8 0 No Structure 2E6 0 No Structure 2H3 0 No Structure 2I1 0 No Structure 3K4 0 No Structure 3K6 0 No Structure 3J5 0 No Structure Total Number of Asbestos **Total Number of Asbestos** Structures ≥ 0.5µm < 10.0 µm: 0 Structures ≥10.0 µm: 0 Associated Associated **Concentration:** BDL< 1.92E+00 MF **Concentration:** BDL< 2.40E-01 MFL

Bobbi Aloisa

From:Bobbi AloisaSent:Thursday, December 01, 2016 12:03 PMTo:wcanavan@hesny.comCc:Bobbi AloisaSubject:SPC holdtimeAttachments:GBV75660-COC-1.pdf

Hi William

On the attached chain, the first sample TW-6, the SPC has an 8 hour hold time. The SPC was received at the lab with about 30 minutes left on the hold time. The lab was not able to set this SPC within that time frame. It was set about 25 minutes past hold time.

I apologize for any inconvenience this may cause.

Bobbi Bobbi Aloisa Vice President Director of Client Services Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Ph: 860-645-8728

Technical Report

prepared for:

Hydro Environmental Solutions One Deans Bridge Road Somers NY, 10589 Attention: Bill Canavan

Report Date: 12/06/2016 Client Project ID: 273 Mongaup Rd. York Project (SDG) No.: 16L0006

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

CT Cert. No. PH-0723

STRATFORD, CT 06615 (203) 325-1371

New Jersey Cert. No. CT-005

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Page 1 of 5

Report Date: 12/06/2016 Client Project ID: 273 Mongaup Rd. York Project (SDG) No.: 16L0006

Hydro Environmental Solutions

One Deans Bridge Road Somers NY, 10589 Attention: Bill Canavan

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on December 01, 2016 and listed below. The project was identified as your project: **273 Mongaup Rd.**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

<u>York Sample ID</u>	Client Sample ID	Matrix	Date Collected	Date Received	
16L0006-01	Potable Well	Drinking Water	11/30/2016	12/01/2016	

General Notes for York Project (SDG) No.: 16L0006

- The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 9. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 12/06/2016

Benjamin Gulizia Laboratory Director

Sample Information

<u>Client Sample ID:</u> Potable Well				York Sample ID:	16L0006-01
York Project (SDG) No. 16L0006	Client Project ID 273 Mongaup Rd.		<u>Matrix</u> Drinking Water	Collection Date/Time November 30, 2016 3:00 pm	Date Received 12/01/2016
Iron by EPA 200.7		Log-in Notes:	<u>S:</u>	ample Notes:	
Sample Prepared by Method: EPA 200.7					

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-89-6 Ir	on	0.0535		mg/L	0.0162	0.0222	1	EPA 200.7 Certifications: 0	CTDOH,NEI	12/02/2016 13:28 LAC-NY10854,NJDE	12/02/2016 19:06 EP,PADEP	KV
Manganese b Sample Prepared by				<u>Log-in</u>	Notes:		<u>Samp</u>	le Notes	<u>::</u>			
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst

7439-96-5	Manganese	ND	mg/L	0.00111	0.00556	1	EPA 200.7	12/02/2016 13:28	12/02/2016 19:06	KV
							Certifications:	CTDOH,NELAC-NY10854,NJDEF	P,PADEP	

Total Dissolved Se	<u>olids</u>		Log-in Notes:	-	Sample Notes	<u>;;</u>				
Sample Prepared by Metho	d: % Solids Prep									
CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOO	Dilution	Reference Method	Date/Time Prepared	Date/Time Analvzed	Analyst
CAS NO.	1 al ameter	Kesuit	Flag	Units	EOD/MIDE EOQ	Dilution	Kelefence Method	Trepareu	Analyzeu	Analyst

Total Dissolved Solids	104	mg/L	10.0	10.0	1	SM 2540C	12/02/2016 20:34	12/06/2016 00:32	AA
						Certifications:	NELAC-NY10854,CTDOH,NJDEP,PADEP		

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Notes and Definitions

*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported t	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take
	note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 4 of 5

	-	-		-	-	_			_		-	_	-				-			-	_
of	0006	Report Type	A Summary	DUE Pkg	sliv.	Electronic Data Deliverables (EDD) Simple Excel	S	zSite EDD		 Comparison et g Regs. (please fill in): 	Container Description(s)	ropresent	HNU3					Tomnoraturo	on Receipt	2,5 °C	
Page	ct No. 1/0 L	Simm	Summary w/ QA Summary CT RCP Package	CTRCP DQA/DUE Pkg NY ASP A Package	NY ASP B Package NJDEP Red. Deliv.	Electronic Data Simple Excel	NYSDEC EQuIS EQuIS (std)	E2-EDD (EQUIS) NJDEP SRP HazSite EDD GIS/KEY (std)	Other	York Regulatory Comparison Excel Spreadsheet Compare to the following Regs. (please fill in)		(1) Plastic -	(1) Plustic - HNU						.6 S.q.	ate/Time	Date/Time
	York Project No. 1/0.	Turn-Around Time	RUSH - Next Day	RUSH - Two Day RUSH - Three Day	RUSH - Four Day	Standard(5-7 Days) 🗙		Full TCLP Flash Point Full App. IX Sieve Anal.	0 5	Equador Equandor Equandor Equandor Equandor Equandor Equandor Equandor Equandor Educares Coloniers e c	e and Enter Below							H ₂ SO↓ NaOH	20 121-16	liker	Samples Received in LAB by
Record	NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.	YOUR Project ID Tui		Purchase Order No. RI		Metals Misc. Or	RCRA8 TPH GRO PP13 list TPH DRO	CTI5 list NY 310-13 F TAGM list TPH 1664 F	NJDEP list Air TO14A Total Air TO15	Dissolved Air STARS SPLP or TCLP Air VPH Indix.Methik Air TICs LIST Below Methane	Choose Analyses Needed from the Menu Above and Enter Below				-			Other Other		ime Samples Received By	
Field Chain-of-Custody Record	NOTE: York's Std. Terms & Conditions are listed on the back side of this document. nent serves as your written authorization to York to proceed with the analyses requeste signature binds you to York's Std. Terms & Conditions.	YOUR I	5	Purchase		Samples from: CT. Semi-Vols. Post/PCB/Herh			TAGM list CT RCP list	TCL list NJDEP list App. IX TCLP BNA	lyses Needed from	n, TOS						HCI MeOH ZnAc Ascorbic Acid	-	shed By Date/Time	shed By Date/Time
nain-of-(td. Terms & Conditions i r written authorization to nature binds you to York	Nul V	and w	vo.	:0	E-Mail Address: Volatiles	8260 full 624 574 pc 1	BTEX	TCL list TAGM list	CT RCP list Arom. only Halog.only App.IX list	Choose Ana	Fe, Mn						4°C Frozen	the Think	Samples Relinquished By	Samples Relinquished By
Field Cł	NOTE: York's Si document serves as your sig		Address:	. Phone No	Attention:	E-Mail.	ust be complete irn-around tim	ork are resolved Matrix Codes	S - soil Other - specify(oil, etc.)	WW - wastewater GW - groundwater DW - drinking water Air-A - ambient air	Sample Matrix	MQ						Preservation Check those Applicable	Special Instructions	Field Filtered	
York Analytical Laboratories 120 Research Dr. Stratford, CT 06615	-	Report To:		Phone No.	Attention:	E-Mail Address:	Samples will NOT be logged in and the turn-around time	clock will not begin until any questions by York are resolved. Matrix Codes		By (Signature). € ∏∂	Date/Time Sampled	1/30/16		× *							
YDRK ANALYTII 120 RE BTRATFOR	Fax (203)	YOUR Information	Budge Rd.	-276-2560	1 Canavan	E-Mail Address: WCGAR Van Chelory . Con E-Mail Address:	and Legibly. A NOT be logge	t begin until an	- Will	Samples Collected/Authorized By (Signature) Sfeve Verd.bello Name (printed)		Well 1									
	YORE	Commany: Holl C	Address: 1 Jean	Phone No. 914-2	Contact Person: Bill Caravan	E-Mail Address: WC	Samples will	CLOCK WILL NOI	XX	Samples Collec Steve	Sample Identification	Patable W						omments Pag	e 5 c	of 5	

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850 (607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS Client: Bill Canavan

FILTER ID: <u>4531</u>	15					<u>HydroEnv</u> <u>One Dear</u> <u>Somers N</u>	rironmental Solution 15 Bridge Road IY 10589	utions, Inc.				
Station/Body of wa	ater:	<u>Gan Ede</u>	n Estates TW-3									
RECEIPT OF FILT	TER:											
Date Received: 1	11/8/2016	7	# of filters: <u>1</u>	Type: <u>b</u>	ulk sample	_ Carrie	er: <u>FedEx</u>					
COLLECTION:												
Collector: Temperature: Water Type:	<u>Chris La</u> na °F Ground V		W)		Date & Time Co Turbidity: Date & Time Pr Date Analyzed:	ocessed:	<u>11/7/2016</u> 12:00 na <u>11/8/2016</u> 11:15 AM 11/15/2016					
FILTER PROCES	SSING				2 ato 7 maly200.		11/10/2010					
Color of water aro Filter color: Color of sediment: # gallons filtered:		<u>clea</u> N/A blac 2.64		V	Total volume of sediment:0.05Volume of sediment/100 gallons:1.89Phase equivalent gallon volume examined:0.88							
ANALYSIS OF PA key = (EH) - ext (M) -mod		eavy [>20	0/field @ 100X] 100X] (R) -	(H) - hea rare [<1-3/	avy [10-20/field @ 100 /field @ 100X] (N)X] NF) - none	found					
PARTICULATE D	DEBRIS	Quantity	Description		PROTOZOANS	Quantity	Description					
Large part. 5 μ m 8 Small part. up to 5 Plant debris	alargoi		fine silt fine brown amorpho	us	 Other Coccidia Other protozoans 	<u>NF</u> NF						
OTHER ORGANIS Nematodes Nematode eggs	SMS	NF			ALGAE Green Algae	NF						
Rotifers Crustaceans		NF NF			— Diatoms —	_NF_						
Crustacean eggs Insects Other		NF NF NF	<u>NF</u>		Blue-Green Algae	_NF						
Oulei					Flagellated Algae	_NF_						
COMMENTS:					_							

(

No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Jusan Z. Boutros

November 21, 2016 DATE:

President & Lab Director

24 Oak Brook Drive, Ithaca, NY 14850

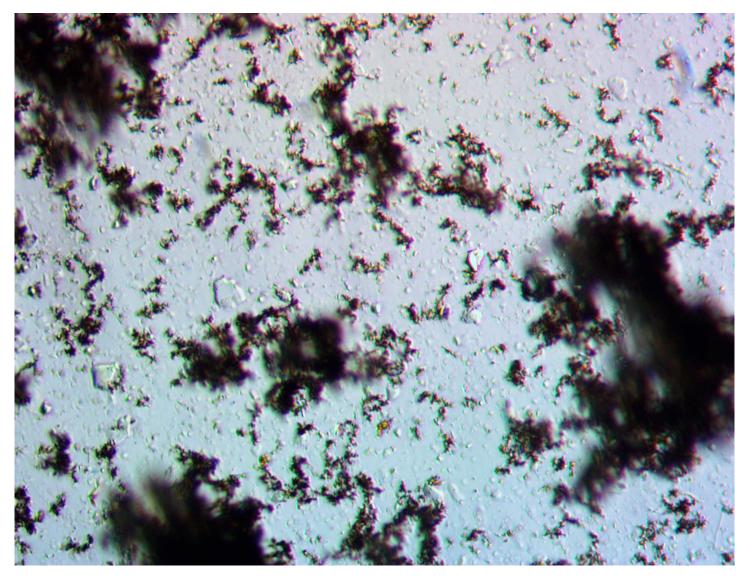
(607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

EPA 910/9-92-029 Well ID# EAL Sample ID: Utility Name Gan Eden Estates TW-3 HvdroEnvironmental Solutions. Inc. 45315 Date: 11/7/2016 **EPA Relative Surface Water Risk Factors** Primary Particulates #/100 gallon Relative Frequency Relative Risk Factor Comments Diatoms 0 NF 0 Other Algae 0 NF 0 Insects/larvae 0 NF 0 Rotifers NF 0 0 Plant Debris (with chloro.) 0 NF 0 EPA Relative Risk = 0 Low Risk Secondary Particulates Nematodes NF 0 Crustaceans NF 0 Amoeba NF Non-photo. flag. & ciliates NF Photosynthetic flagellates NF 0 Other: NF 0

COMMENTS: No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA) US EPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.


Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Dr. Susan Boutros President & Lab Director

Bartio

45315 client HydroEnvironmental Solutions, Inc.

45315A Typical sediment 400X

Environmental Associates Ltd., 24 Oak Brook Dr., Ithaca, NY 14850 - Ph 607-272-8902 - eal-labs.com

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850 (607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS Client: Bill Canavan

FILTER ID: 4530	2			HydroEnv One Dear Somers N	rironmental Solu <u>ns Bridge Road</u> IY 10589	tions, Inc.
Station/Body of wa	ter: <u>Gan Eden Estates</u>	3 TW-5				
RECEIPT OF FILT	ER:					
Date Received: 1	1/5/2016 # of filters	s: <u>1</u> Type: <u>k</u>	oulk sample	Carrie	er: <u>FedEx</u>	
COLLECTION:						
Collector: Temperature: Water Type:				ocessed:	11/3/2016 na 11/5/2016	13:30 11:00 AM
FILTER PROCES	SING		Date Analyzed:		11/15/2016	
Color of water aro Filter color: Color of sediment: # gallons filtered:	N/A	V	otal volume of sedimer olume of sediment/100 hase equivalent gallon) gallons:	0.04 1.52 kamined: <u>1.32</u>	
ANALYSIS OF PA key = (EH) - ext (M) -mod	RTICULATES: emely heavy [>20/field @ erate [4-9/field @ 100X]	100X] (H) - he (R) - rare [<1-3	avy [10-20/field @ 100 /field @ 100X] (N)X] NF) - none	found	
PARTICULATE D	EBRIS Quantity Descrip	otion	PROTOZOANS	Quantity	Description	
Large part. 5 μ m 8 Small part. up to 5 Plant debris		n amorphous	Other Coccidia Other protozoans	<u>NF</u> NF		
OTHER ORGANIS Nematodes Nematode eggs	SMS <u>NF</u> NF		ALGAE Green Algae	NF		
Rotifers Crustaceans			— Diatoms —	_NF_		
Crustacean eggs Insects	NF		Blue-Green Algae	_NF_		
Other	NF		Flagellated Algae	_NF_		
COMMENTS:			_			

(

No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Jusan Z. Boutros

November 21, 2016 DATE:

President & Lab Director

24 Oak Brook Drive, Ithaca, NY 14850

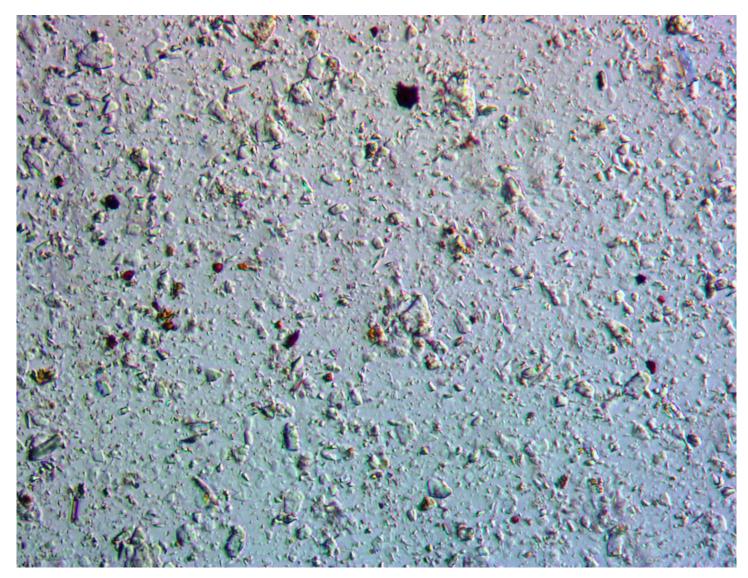
(607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

EPA 910/9-92-029 Well ID# EAL Sample ID: Utility Name Gan Eden Estates TW-5 HvdroEnvironmental Solutions. Inc. 45302 Date: 11/3/2016 **EPA Relative Surface Water Risk Factors** Primary Particulates #/100 gallon Relative Frequency Relative Risk Factor Comments Diatoms 0 NF 0 Other Algae 0 NF 0 Insects/larvae 0 NF 0 Rotifers NF 0 0 Plant Debris (with chloro.) 0 NF 0 EPA Relative Risk = 0 Low Risk Secondary Particulates Nematodes NF 0 Crustaceans NF 0 Amoeba NF Non-photo. flag. & ciliates NF Photosynthetic flagellates NF 0 Other: NF 0

COMMENTS: No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA) US EPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.


Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Dr. Susan Boutros President & Lab Director

Bartio

45302 client HydroEnvironmental Solutions, Inc.

45302A Typical sediment 400X

Environmental Associates Ltd., 24 Oak Brook Dr., Ithaca, NY 14850 - Ph 607-272-8902 - eal-labs.com

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850 (607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

FILTER ID: <u>45301</u>			vironmental Solutions, Inc. ns Bridge Road NY 10589
Station/Body of wat	er: <u>Gan Eden Estates</u> TW-8		
-			
RECEIPT OF FILT	ER:		
Date Received: 11	1/5/2016 # of filters: <u>1</u> Typ	e: <u>bulk sample</u> Carrie	er: <u>FedEx</u>
COLLECTION:			
Collector:	Chris Lafonte	Date & Time Collected:	<u>11/3/2016 12:00</u>
Temperature:	na °F	Turbidity:	na
Water Type:	Ground Water (GW)	Date & Time Processed:	11/5/2016 11:00 AM
		Date Analyzed:	11/15/2016
FILTER PROCES	SING		
Color of water arou	Ind filter: <u>clear</u>	Total volume of sediment:	0.4
Filter color:	N/A	Volume of sediment/100 gallons:	15.15
Color of sediment:	brown	Phase equivalent gallon volume e	xamined: 0.07
<pre># gallons filtered:</pre>	2.64172		
(M) -mode	erate [4-9/field @ 100X] (R) - rare [<	heavy [10-20/field @ 100X] 1-3/field @ 100X] (NF) - none PROTOZOANS	found
PARTICULATE DE	Quantity Description	Quantity	Description
Large part. 5 μ m &		Other Coccidia	
Small part. up to 5	μm <u>EH</u> fine brown amorphous	Other protozoans <u>NF</u>	
Plant debris	NF		
OTHER ORGANIS	MS	ALGAE	
Nematodes	NF	Green Algae <u>NF</u>	
Nematode eggs	NF		
Rotifers	<u>NF</u>	—— Diatoms <u>NF</u>	
Crustaceans	_NF		
Crustacean eggs	<u>_NF</u>	Blue-Green Algae <u>NF</u>	
Insects	<u></u>	Bide-Green Aigae <u>NF</u>	
Other	NF	Flagellated Algae <u>NF</u>	
		Flayellated Alyae <u>INF</u>	
COMMENTS:			

No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Jusan Z. Boutros

DATE: November 21, 2016

President & Lab Director

24 Oak Brook Drive, Ithaca, NY 14850

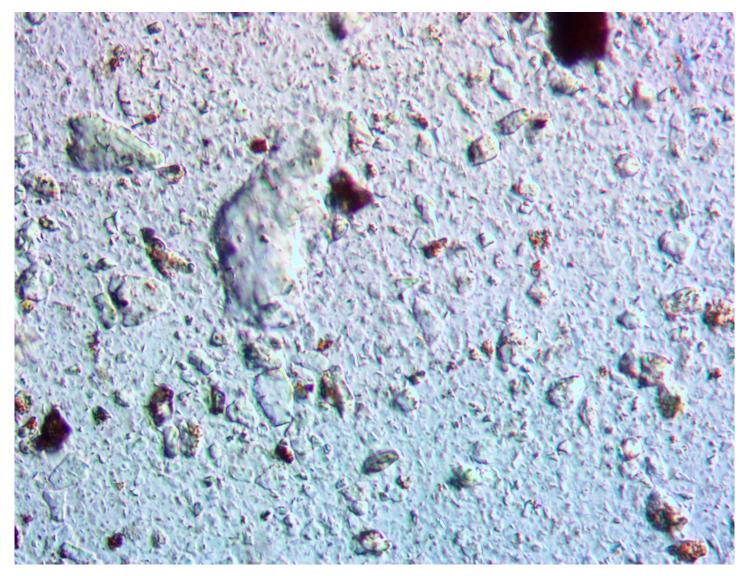
(607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

EPA 910/9-92-029 Well ID# EAL Sample ID: Utility Name Gan Eden Estates TW-8 HvdroEnvironmental Solutions. Inc. 45301 Date: 11/3/2016 **EPA Relative Surface Water Risk Factors** Primary Particulates #/100 gallon Relative Frequency Relative Risk Factor Comments Diatoms 0 NF 0 Other Algae 0 NF 0 Insects/larvae 0 NF 0 Rotifers NF 0 0 Plant Debris (with chloro.) 0 NF 0 EPA Relative Risk = 0 Low Risk Secondary Particulates Nematodes NF 0 Crustaceans NF 0 Amoeba NF Non-photo. flag. & ciliates NF Photosynthetic flagellates NF 0 Other: NF 0

COMMENTS: No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA) US EPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.


Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Dr. Susan Boutros President & Lab Director

Bartio

45301 client HydroEnvironmental Solutions, Inc.

45301A Typical sediment 400X

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850 (607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS Client Bill Canavan

FILTER ID: <u>4530</u>	0		Olien	HydroEnv	rironmental Solu ns Bridge Road IY 10589	tions, Inc.
Station/Body of wa	ter: <u>Gan Ede</u>	en Estates TW-6				
RECEIPT OF FILT	ER:					
Date Received: 1	1/5/2016	# of filters: <u>1</u> Type:	bulk sample	Carrie	er: <u>FedEx</u>	
COLLECTION:						
Collector:	Chris Lafonte		Date & Time Co	Date & Time Collected: Turbidity:		11:30
Temperature:	<u>na °F</u>					
Water Type:	Ground Water (G	iW)			11/5/2016	11:00 AM
			— Date Analyzed:		11/15/2016	
FILTER PROCES	SING					
Color of water aro	und filter: <u>clea</u>	ır	Total volume of sedimer	nt:	0.1	
Filter color:	<u>N/A</u>		Volume of sediment/100) gallons:	0.38	
Color of sediment:	light	t brown	Phase equivalent gallon volume examined: 2.64			
# gallons filtered:	<u>2.64</u>	1172				
(M) -mod	remely heavy [>2 erate [4-9/field @	100X] (R) - rare [<1	neavy [10-20/field @ 100 -3/field @ 100X] (I PROTOZOANS	NF) - none		
		Description		Quantity	Description	
Large part. 5 μ m 8		fine silt	Other Coccidia	<u>_NF_</u> _NF_		
Small part. up to 5	μm <u>EH</u> NF	fine brown amorphous	Other protozoans			
Plant debris						
			ALGAE			
OTHER ORGANIS	SMS NF		Green Algae	_NF_		
Nematodes	<u>NF</u>					
Nematode eggs Rotifers	<u>N</u>		 Diatoma	NF		
Crustaceans	NF		— Diatoms			
Crustacean eggs	NF					
Insects	NF		Blue-Green Algae	_NF_		
Other	NE					
			Flagellated Algae	_NF_		
COMMENTS:						

(

No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

Jusan Z. Boutros

November 21, 2016 DATE:

President & Lab Director

24 Oak Brook Drive, Ithaca, NY 14850

(607) 272-8902 Fax (607) 256-7092

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

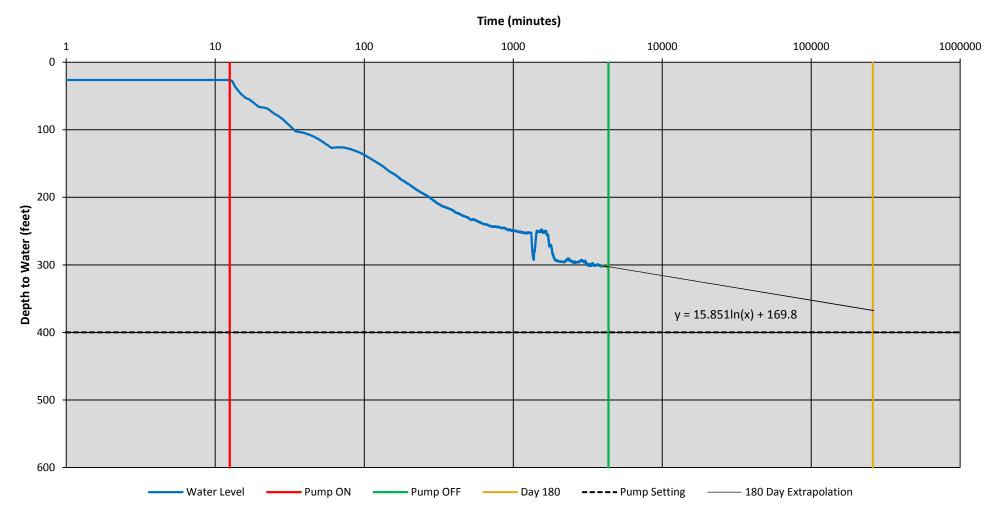
EPA 910/9-92-029 Well ID# EAL Sample ID: Utility Name Gan Eden Estates TW-6 HvdroEnvironmental Solutions. Inc. 45300 Date: 11/3/2016 **EPA Relative Surface Water Risk Factors** Primary Particulates #/100 gallon Relative Frequency Relative Risk Factor Comments Diatoms 0 NF 0 Other Algae 0 NF 0 Insects/larvae 0 NF 0 Rotifers NF 0 0 Plant Debris (with chloro.) 0 NF 0 EPA Relative Risk = 0 Low Risk Secondary Particulates Nematodes NF 0 Crustaceans NF 0 Amoeba NF Non-photo. flag. & ciliates NF Photosynthetic flagellates NF 0 Other: NF 0

COMMENTS: No biological indicators of significance were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Volumes collected and processing followed the NYSDOH method.

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA) US EPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

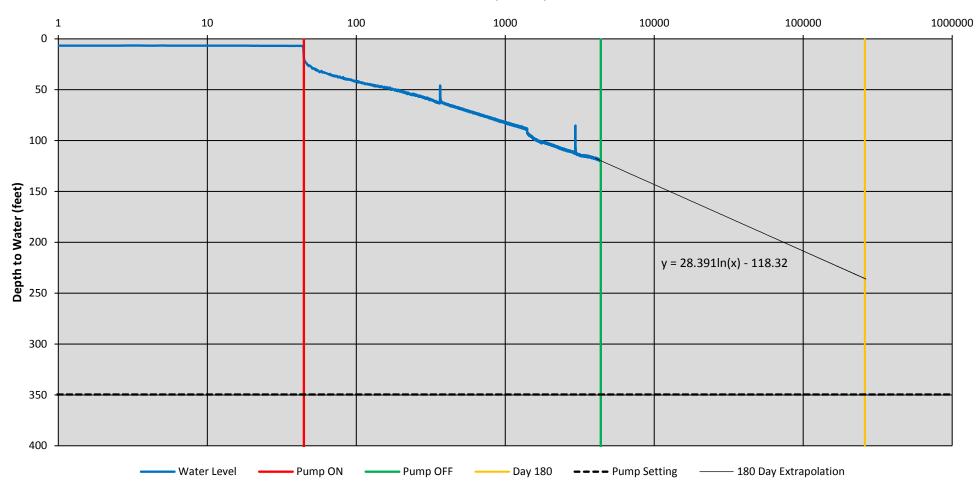
Environmental Associates Ltd. certifies that all quality control elements associated with the above data have been met except as may be noted in the comments section. Results relate only to the sample.

REPORT REVIEWED BY:

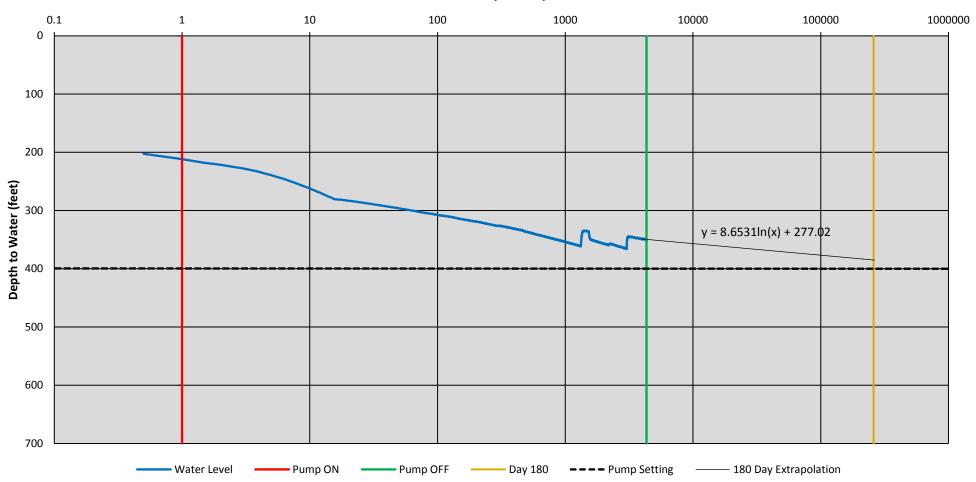

Dr. Susan Boutros President & Lab Director

Bartio

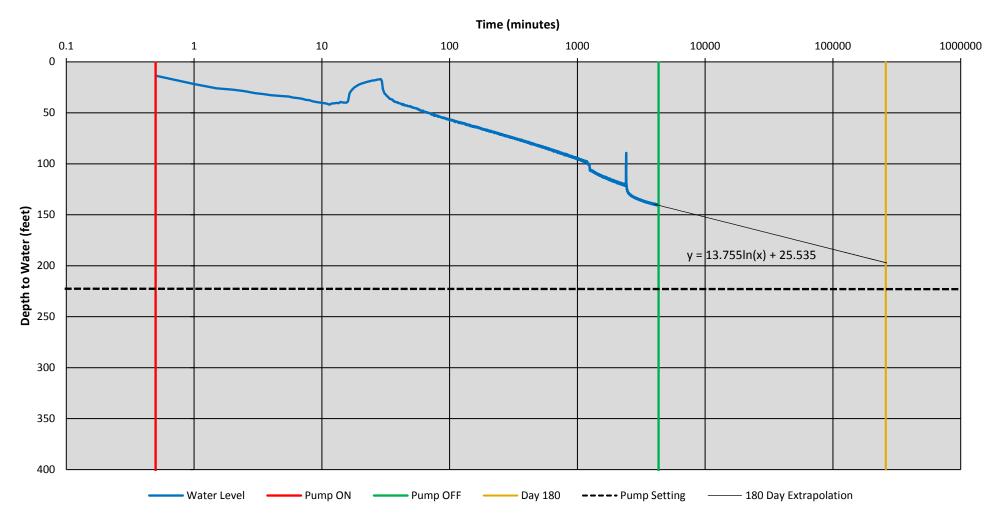
APPENDIX 6:


180-Day Drawdown Analysis

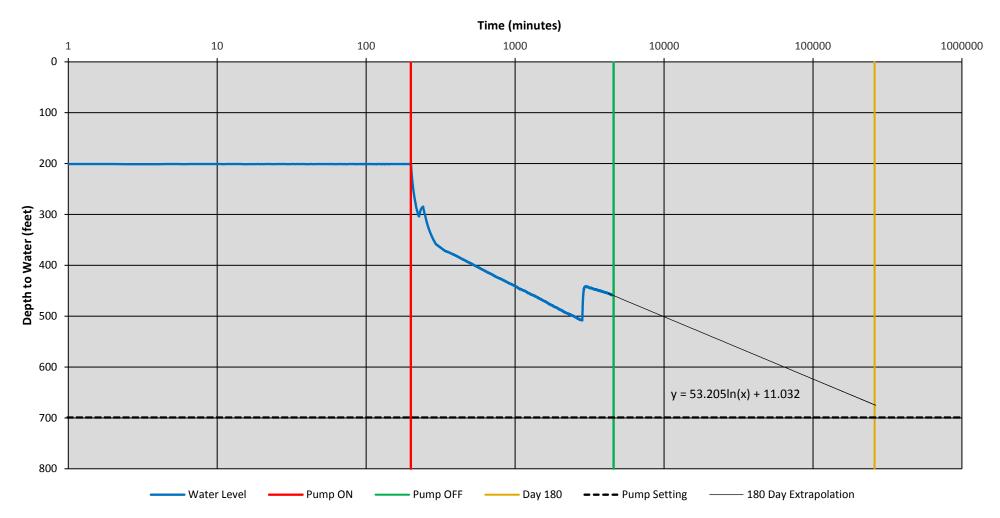
TW-3 Pumping Well Hydrograph 72-Hour Pump Test - 1 (180-Day Drawdown Extrapolation)


TW-5 Pumping Well Hydrograph 72-Hour Pump Test - 1 (180 Day Drawdown Extrapolation)

Time (minutes)



TW-8 Pumping Well Hydrograph 72-Hour Pump Test - 1 (180 Day Drawdown Extrapolation)


Time (minutes)

TW-6 Pumping Well Hydrograph 72-Hour Pump Test - 2 (180 Day Drawdown Extrapolation)

TW-8 Pumping Well Hydrograph 72-Hour Pump Test - 2 (180 Day Drawdown Extrapolation)

